Содержание
физические формулы, использующие мощность и напряжение
При выборе какого-либо электрического оборудования одним из важных параметров, на который обращается внимание, является мощность изделия. Этот параметр неразрывно связан с силой тока и напряжением. Чтобы рассчитать силу тока, напряжение или мощность в электрической цепи, используются несложные формулы. Но чтобы осмысленно проводить такие вычисления, желательно понимать физическую природу возникновения этих величин.
- Физическое понятие величин
- Сила тока
- Разность потенциалов
- Электрическая мощность
- Закон Ома для цепи
- Практический расчёт
Физическое понятие величин
Любая электрическая цепь характеризуется рядом параметров. Наиболее важными из них являются сила тока, напряжение, мощность и сопротивление. Эти характеристики связаны между собой и зависят друг от друга. Явление, объединяющее их, называется электричеством.
Это понятие было введено ещё в 1600 году английским физиком Уильямом Гилбертом, изучающим магнитные и электрические явления. Исследуя магнетизм в природе, учёный установил, что некоторые тела при трении начинают обладать силой притяжения по отношению к другим предметам, в частности, к янтарю. Поэтому он и назвал открытое явление ēlectricus, что в переводе с латинского обозначает «янтарный».
Продолжая его исследования, немецкий физик Отто фон Герике в 1663 году изобрёл электрическую машину, которая представляла собой металлический стержень с одетым на него серным шаром. В результате он выяснил, что материалы могут не только притягивать вещества, но и отталкивать. Но только через восемьдесят лет американец Бенджамин Франклин создал теорию электричества, введя такие термины, как отрицательный и положительный заряд.
Дальнейшее развитие электричество получило после опытов Шарля Кулона и открытия им закона взаимодействия зарядов. Заключался он в следующем: сила влияния двух точечных зарядов друг на друга в вакууме прямо пропорциональна их произведению и обратно пропорциональна расстоянию между ними в квадрате. После этого благодаря экспериментам таких учёных, как Джоуль, Ленц, Ом, Ампер, Фарадей, Максвелл были введены понятия ток, напряжение и электромагнетизм.
Так, в 1897 году англичанин Джозеф Томсон установил, что носителями зарядов являются электроны. Ранее, в 1880 году, электротехник из России Дмитрий Лачинов сформулировал необходимые условия для передачи электричества на расстояния.
После этих открытий были выработаны фундаментальные определения электричества. Сегодня под ним понимаются свойства материалов образовывать вокруг себя электрическое поле, оказывающее воздействие на располагающиеся рядом другие заряженные частицы. Заряды условно принято разделять на положительные и отрицательные. При их перемещении возникает магнитное поле, при этом одинакового знака заряды притягиваются, а разного — отталкиваются.
Сила тока
Ток — это упорядоченное движение носителей заряда, происходящее под влиянием электрического поля. В качестве положительно заряженных частиц выступают электроны, а отрицательных — дырки. Математически это явление описывается с помощью формулы I = Q*T, где I — ток проводимости (А), Q — заряд частицы (Кл), T — время ©.
То есть электрическим током называется количество зарядов, прошедших через поперечное сечение вещества. Но эта формулировка верна только для тока постоянной величины, в то время как для изменяемого во времени она будет выглядеть I (T) = dQ/dT.
Плотность движения носителей заряда в материале, то есть количество электричества, проходящего за условно принятое время, называется силой тока. Согласно Международной системе (СИ) его единицей измерения является ампер. Один ампер равен перемещению электрического заряда, равного одному кулону, через поперечное сечение за одну секунду.
Носители заряда могут двигаться как упорядоченно, так и хаотично. При их движении возникает электрическое поле, обозначаемое латинской буквой E. Значение, определяющееся отношением тока к поперечному сечению проводника, называется плотностью тока. За единицу её измерения принимается А/мм2.
По своему виду ток различают на следующие типы:
- Переноса. Характеризуется движением зарядов, осуществляемым в свободном пространстве. Этот тип характерен для газоразрядных приборов.
- Смещения. Возникает в диэлектриках и определяется упорядоченным перемещением связанных заряженных частиц.
- Полный. Определяется суммарным значением тока: проводимости, переноса и смещения.
- Постоянный. Это такой вид, который может изменять величину, но не изменяет направление движения, то есть свой знак.
- Переменный. Такого вида ток может изменяться как по величине, так и по направлению (знаку).
Переменный вид разделяется по форме и может быть синусоидальным и несинусоидальным. Для расчёта силы тока синусоидальной формы используется формула Is = Ia*sin ωt, где Ia — максимальное значение тока (A), ω — угловая скорость, равная 2πf (Гц).
Физические тела, в которых возможно протекание тока, называют проводниками, а в тех, где возникают препятствия его прохождению — диэлектриками. Промежуточное состояние между ними занимают полупроводники.
Разность потенциалов
Напряжением принято называть физическую величину, характеризующую электрическое поле. Она показывает, какую работу понадобится совершить полю для того, чтобы переместить единичный заряд из одной точки в другую. При этом принимается, что этот перенос не влияет на распределение зарядов в источнике поля. Согласно Международной системе единиц напряжение измеряется в вольтах.
Работа по переносу складывается из двух величин — электрических и сторонних. Если сторонние силы не действуют, то напряжение на участке цепи равно разности потенциалов и вычисляется по формуле U = φ1-φ2. При этом потенциал определяется отношением напряжённости электрического поля к заряду. Для его расчёта используют формулу φ = W/q.
Другими словами, это характеристика поля в определённой точке, не зависящей от величины заряда, находящегося в нём. То есть напряжение в общем случае определяется работой электростатического поля, возникающего при движении заряда вдоль его силовых линий. Математически его можно рассчитать по формуле U = A/q, где А — совершаемая работа по перемещению (Дж), q — энергия заряда (Кл).
Применительно к сети переменного тока для напряжения используются следующие понятия:
- Мгновенное. Это значение физической величины, измеренное в конкретный момент времени: U = U (t). Для синусоидального сигнала мгновенное напряжение находится с помощью выражения U (t) = Ua sin (ὤt + φ).
- Амплитудное. Характеризуется наибольшей величиной мгновенного значения без учёта знака: Ua = max (U (t)).
- Среднее. Определяется за полный период сигнала по формуле Us = 1/T ʃ U (t)*dt. Для синусоидальной формы это значение равно нулю.
Проводя расчёт напряжения, редко используется понятие электрического потенциала. Связано это с тем, что условно принято за одну из точек потенциала принимать землю.
Это значение берётся равным нулю, а все остальные потенциалы считаются относительно неё. Говоря, что напряжение в определённой точке составляет 300 вольт, имеется в виду разность потенциалов между этой точкой и землёй, равная этому значению.
Электрическая мощность
Электрическая мощность характеризует скорость передачи электрической энергии или её преобразование. Единицей её измерения является ватт. Для того чтобы посчитать мощность на определённом участке цепи, необходимо перемножить значение напряжения и силы тока на этом участке. Исходя из определения электрического напряжения, можно сказать, что заряд при движении совершает работу, численно равную ей на участке цепи. Если же умножить работу на количество зарядов, то можно найти общее значение работы, которую совершили заряды на этом участке.
Исходя из физического определения, что мощность — это работа за единицу времени, получается выражение P = A/Δt, где A — работа, совершаемая зарядом при перемещении от начальной точки к конечной (Дж), Δt — время, затраченное на полное перемещение заряда ©.
Для всех зарядов в цепи мощность можно найти благодаря формуле P = (U/ Δt) * Q, где Q — общее число зарядов.
Так как ток представляет собой заряд, протекающий в единицу времени (I = Q/ Δt), то получается, что мощность равна произведению тока на напряжение, то есть P = U*I (Вт).
В цепи с постоянным током его сила и напряжение всегда имеют постоянное значение в определённой точке, поэтому для любого момента времени мощность можно вычислить по формуле P = I*U = I2*R = U2/R, где R — сопротивление прохождению тока в электрической цепи (Ом). Если же в этой сети находится источник электродвижущей силы, то мощность находится как P = I*E+ I2*r, где Е — электродвижущая сила или ЭДС (В), r — внутреннее сопротивление источника ЭДС (Ом).
Для цепи, в которой её параметры изменяются по какому-то циклу, мощность в определённой точке интегрируется по времени. При этом существуют следующие виды мощности:
- Активная. Для её нахождения используется расчёт, учитывающий угол сдвига фаз φ. Находится согласно формуле P = U*I*cos φ.
- Реактивная. Характеризуется нагрузками, создаваемыми электрическими устройствами в виде колебаний энергии электромагнитного поля. Её вычисление осуществляется по формуле P = U*I*sin φ.
- Полная. Определяется произведением действующих значений тока и напряжения, связана с другими видами мощности выражением S= √(P 2 +Q 2).
Закон Ома для цепи
Проводя расчёты мощности по напряжению и току на практике, часто используют закон Ома. Он устанавливает связь между током, сопротивлением и напряжением. Этот закон был открыт путём проведения Симоном Омом ряда экспериментов и сформулирован им в 1826 году. Он выяснил, что величина тока на участке цепи прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению этого участка.
Закон Ома можно записать в следующем виде: I = U/R, где I — значение силы тока (А), U — разность потенциалов (В), R — сопротивление цепи прохождению тока (Ом).
Для полной же цепи эту формулу можно записать так: I = E/(R+ r0), где E — ЭДС источника питания (В), r0 — внутреннее сопротивление источника напряжения (Ом).
Таким образом, для участка цепи будет справедливо выражение P = U2/R = I2R, а для полной цепи — P = (E/(R+ R0))2*R. Именно эти две формулы и используются чаще всего для расчётов электрических сетей или мощности необходимого оборудования.
Различные компоненты электрической сети в определённый момент времени потребляют разную величину тока. Поэтому очень важно правильно рассчитать, какое количество энергии подводится в тот или иной момент в определённое место цепи, чтобы не допустить перегрузок на линии и возникновения аварийных ситуаций.
Этим и занимаются разработчики схем, упрощая их до состояния, когда можно рассчитать необходимую мощность, используя закон Ома.
Практический расчёт
Например, пусть понадобится узнать, на какой ток необходимо приобрести устанавливаемый на участок цепи автоматический выключатель. При этом известно, что в линию, на которой он будет установлен, одновременно будут включаться холодильник с максимальной мощностью потребления энергии один киловатт, бойлер (два киловатта) и люстра, потребляющая 90 ватт. В месте установки используется однофазная сеть, рассчитанная на рабочее напряжение 220 вольт.
На первом этапе расчёта понадобится суммировать всю мощность подключаемых к линии электроприборов. Так, P общ. = 1000 + 2000 + 90 +220 = 3310 Вт. Используя формулу P = I*U, находится необходимое значение тока: I = P/U = 3310/220 = 15,04 А.
Из стандартного ряда выключателей наиболее близкое значение имеет автомат на 16 А. Поскольку необходимо покупать устройство защиты с небольшим запасом, то для рассматриваемого примера подойдёт выключатель, рассчитанный на 20 ампер.
Благодаря таким вычислениям можно рассчитать любой параметр электрической цепи, но это при учёте достаточного количества вводных данных.
основные понятия, нахождение через силу тока и сопротивление
При проектировании схем различных устройств радиолюбителю необходимо производить точные расчеты c помощью измерительных приборов и формул. В электротехнике используются формулы для вычислений величин электричества (формулы напряжения, сопротивления, силы тока и так далее).
- Общие сведения об электрическом токе
- Физический смысл
- Пагубное влияние на человека
- Единицы измерения
- Цепи переменного и постоянного тока
- Переменное однофазное напряжение
- Рекомендации по выбору прибора
Общие сведения об электрическом токе
Электрическим током является процесс движения заряженных частиц (свободных электронов), имеющий вектор направленности. Частицы перемещаются под действием напряженности электрического поля, имеющей векторное направление. Это поле совершает работу по перемещению этих частиц. Влияют на работу электрического поля сила тока, напряжение и сопротивление.
Физический смысл
Под физическим смыслом понимается работа тока на участке, соотносящаяся с величиной заряда. Положительный заряд перемещается из одной точки, обладающей одним потенциалом, в другую, причем потенциал в этой точке отличается от предыдущего. В результате этого и возникает разность потенциалов, именуемая напряжением или ЭДС (электродвижущей силой).
Для полного понимания этого физического процесса и выяснения физического смысла напряжения необходимо провести аналогию с трубой. Допустим, труба наполнена водой и к ней прикручен кран для слива воды. Эта труба также оборудована краном для заливания воды с помощью мощного насоса.
Для демонстрации аналогии нужно открыть кран полностью, вода начнет выливаться и можно сделать вывод о незначительном давлении. Во втором случае спускной кран открыт не полностью и происходит набор воды при помощи насоса. В трубе создается давление и напор усиливается. Насос, создающий давление, и является в этом примере напряженностью электрического поля.
Электричество, если его не контролировать и не знать о пагубном влиянии на организм человека, способно создать множество проблем начиная от сгорания приборов и пожаров, и заканчивая угрозой жизни и здоровью человека. Техника безопасности очень важна в любой сфере.
Пагубное влияние на человека
Электричество очень опасно и является причиной несчастных случаев. Радиолюбители подвержены риску поражения электрическим током довольно часто. Некоторые радиолюбители пробуют наличие напряжения пальцами и пренебрегают техникой безопасности. Большинство из них считает опасным для жизни напряжение от 500 В, а 110 и 220 — не наносящими вреда здоровью. Удары от маломощных источников тока (маломощный силовой трансформатор, конденсатор), по их мнению, являются неопасными.
Согласно технике безопасности при работах с электричеством, они ошибаются, но есть и другая сторона этого вопроса: организм каждого человека индивидуален, обладает разными параметрами. Из этого утверждения следует, что смертельные характеристики электричества (напряжение и ток) индивидуальны для каждого человека. Одних может ударить 36 В, а других не пробивает и 220 В.
Действие электричества на организм человека зависит от нескольких факторов: силы и частоты, времени и пути прохождения через организм, сопротивления организма или участка тела, по которому протекает ток.
Исследованиями ученых установлено, что величина смертельного тока, поражающего сердце, составляет более 100 мА. Токи от 50 мА до 100 мА вызывают потерю сознания при кратковременном касании к поверхности, которая проводит ток. Токи до 50 мА могут стать причиной травм, например, падения с лестницы, выпускания из рук токоведущего проводника и т. д.
Влияние на фактор поражения еще оказывает и сопротивление тела человека. Сопротивление для каждого индивида определить сложно и диапазон его составляет от 30 кОм до 200 кОм. Эта величина зависит от множества факторов: толщины кожи, влажности тела и окружающей среды, усталости, нервно-эмоционального состояния, болезни и других факторов. Сопротивление резко уменьшается при повышенной влажности воздуха и работе на влажных участках.
Формула расчета напряжения, опасного для жизни, предполагая, что Rч = 2кОм и I = 60 мА, выглядит так: U = I * R = 0,06 * 2000 = 120 В. В этой ситуации опасным напряжением можно считать 120 В и выше.
Частота тока является еще одной опасной характеристикой, обладающей поражающим действием. При увеличении частоты опасность уменьшается прямо пропорционально. Ток оказывает и тепловое действие, поэтому считать высокочастотные токи безопасными нельзя.
Травмы, происходящие из-за электричества, называются электротравмами. Каждая из них несет в себе меньшую или большую опасность. Наиболее опасными являются травмы, полученные от электрической дуги, которая обладает высокой температурой от 5 тыс. до 12 тыс. градусов по Цельсию. Виды электрических травм:
- Электрические ожоги происходят при тепловом воздействии на ткани организма человека, по которым течет ток.
- Обожженные участки на коже возникают при прямом контакте ее с токоведущей частью проводника. Пораженный участок приобретает серый или бледно-серый цвет.
- Металлизация кожи — пропитывание кожи частицами металла при коротком замыкании или сварке.
- Механические повреждения — самопроизвольная судорога мышц, приводящая к падению. При падении происходят переломы, ушибы вывихи суставов и т. д.
- Электроофтальмия — воспаление слизистой оболочки глаз при воздействии излучения электрической дуги.
Существует еще один вид поражения — электрический удар. Этот вид поражения можно условно разделить на 5 групп: без потери сознания; с потерей сознания, связанной с нарушением сердечной деятельности или без нее; клиническая смерть и электрический шок.
Единицы измерения
Работа электрического поля по перемещению заряда измеряется в Дж (Джоуль), заряд в Кл (кулон). Вот, как обозначается напряжение или его единица измерения: отношение этих величин (работа по перемещению в Дж к электрическому заряду в Кл) и является разностью потенциалов, измеряется в вольтах (В) и обозначается U. Разность потенциалов бывает:
- Переменной (амплитуда и полярность изменяются с течением времени, в зависимости от характерной частоты).
- Постоянной (имеет постоянное значение амплитуды и полярность есть величина постоянная).
А также у единиц измерения есть приставки, например, кВ (Киловольт = 1000В) и МВ (мегавольт = 1000000В). Существуют о совсем низкие значения, например, мВ (милливольт = 0,001В).
Цепи переменного и постоянного тока
В цепях постоянного и переменного тока U обладает различными свойствами и производит иные влияния на проводники. Для постоянного напряжения существуют законы по вычислению его характеристик, но для переменного способы вычисления показателей заметно отличаются. Разберем более подробно все различия и сходства.
Расчет и анализ цепей выполняется при помощи закона Ома: сила тока полной цепи прямо пропорциональна напряжению и обратно пропорциональна сумме сопротивлений цепи и источника питания.
Следствие из закона при условии пренебрежения внутренним сопротивлением источника электричества: сила тока участка цепи прямо пропорциональна ЭДС и обратно пропорциональна сопротивлению этого участка.
Запись закона Ома, из которого следует формула напряжения, тока и сопротивления: I = U / (Rц + Rвн), где I — сила тока, U — ЭДС, Rц — сопротивление цепи, Rвн — внутреннее сопротивление источника питания.
Формула силы тока через сопротивление и напряжение: I = U / Rц.
Формула напряжения электрического тока: U = I * Rц.
Для расчета мощности необходимо U умножить на I: P = U * I = U * U / R, где P — мощность.
Переменное однофазное напряжение
В цепях для переменного тока происходят совершенно другие явления и процессы, для них справедливы другие законы. Различают такие основные виды:
- Мгновенное (разность потенциалов в конкретный промежуток времени: u = u (t)).
- Амплитудное значение (максимальное значение мгновенного U в момент времени: u (t) = Uм * sin (wt + f), где w — угловая частота, t — конкретный момент времени и f — угол начальной фазы напряжения).
- Среднее значение (для синусоиды равно нулю).
- Среднеквадратичное — Uq (U за весь период колебаний и для синусоиды имеет вид: Uq = 0,707 * Uм).
- Средневыпрямленное — Uv (среднее значение модуля U: Um примерно равно 0,9 * Uq).
В цепях 3-фазного тока различают 2 вида напряжений: линейное (фаза-фаза) и фазное (фаза-ноль). При соединении в цепь «треугольником» фазное и линейное U равны. В случае соединения «звездой» — фазное в 1,732050808 раз меньше линейного.
Рекомендации по выбору прибора
Для расчетов необходимо измерять значения величин электричества. Существуют специальные приборы, которые помогают произвести точные расчеты. Для измерения разности потенциалов применяют вольтметр.
Вольтметр (вольт — единица измерения ЭДС, метр — измеряю) — прибор для измерения ЭДС в цепи, подключаемый параллельно участку, на котором необходимо провести замер.
Для конкретного случая необходимо применять тот или иной прибор. Для более точных расчетов приобретаются приборы с высоким классом точности. Классификация вольтметров:
- Принцип действия: электромеханические (стрелочные) и электронные.
- Назначение: постоянного и переменного тока, импульсные, селективные и универсальные.
- Конструктивное исполнение: щитовые, переносные и стационарные.
Аналоговый электромеханический вольтметр имеет большие погрешности измерений в высокоомных цепях, но отлично зарекомендовал себя в низкоомных цепях и возможностью модернизации (увеличение значений измерения U за счет добавочного резистора).
Выпрямительный вольтметр обладает более высоким классом точности. Состоит из самого измерительного прибора (обладает чувствительностью к постоянному току) и выпрямительного устройства. Они получили не очень широкое распространение из-за высоких погрешностей, и применяются в качестве сигнальных приборов (примерное значение U).
Цифровые вольтметры применяются в комбинированных приборах-мультиметрах. Поступающее напряжение на клеммы (измерительные щупы) прибора преобразовывается в сигнал при помощи аналого-цифрового преобразователя (АЦП). Происходит отображение на цифровом табло. Этот вид приборов получил широкое применение благодаря высокой точности и универсальности.
Импульсный вольтметр необходимо применять при измерении амплитуд импульсных сигналов и одиночных импульсов.
Основным применением фазочувствительных вольтметров является измерение квадратурных составляющих комплексного напряжения (наличие мнимой и действительной частей) первичной гармоники. Они, как правило, снабжены 2-мя индикаторами для выявления мнимой и действительной частей. Они получили широкое применение в измерении АФХ (амплитудно-фазовая характеристика) для подбора деталей и настройки усилителей.
Для измерения номинала постоянного напряжения используются вольтметры подгруппы В2 (вольтметры для постоянного напряжения), а также В7 (универсальные).
Для определения переменного напряжения необходимо использовать устройства из подгруппы В3 или универсального типа (В7). Однако часто в этих вольтметрах применяются специальные преобразователи из переменного напряжения в постоянное.
В3 и В7 рассчитаны только для определения среднеквадратического гармонического напряжения. В этих электроизмерительных приборах возможно применение детекторов (преобразователей): пикового, выпрямительного и квадратичного. Оптимальным вариантом является вольтметр на квадратичном детекторе, при этом измеряемое значение выдается напрямую без всяких преобразований. Измерительные приборы на пиковых и выпрямительных детекторах пересчитывают значения, тем самым уменьшая точность измерений. Для измерения периодического негармонического напряжения выбирают вольтметр на квадратичном детекторе.
Таким образом, расчет напряжения играет важную роль в электротехнике. Расчеты для переменных и постоянных цепей электрического тока существенно отличаются, в результате чего необходимо определить сначала тип тока, а затем производить расчеты. Но также необходимо соблюдать технику безопасности при работах с электричеством. Ведь ее основные положения основаны на горьком опыте человечества.
Сопротивление току напряжения и электрическая мощность общие основные электрические формулы математические расчеты формула калькулятора для расчета мощности уравнение работы энергии закон мощности ватты понимание общая электрическая круговая диаграмма расчет электроэнергии электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон ома аудио физика электричество электроника формула колесо формулы амперы ватты вольты омы уравнение косинуса аудиотехника круговая диаграмма заряд физика мощность звукозапись расчет электротехника формула мощность математика пи физика отношение отношение
Напряжение, ток, сопротивление и электрическая мощность, общие основные электрические формулы, математические расчеты, формула калькулятора для расчета мощности, энергия, работа, уравнение, мощность, закон, ватты, понимание, общая электрическая круговая диаграмма, расчет электричества, электрическая ЭДС, напряжение, формула мощности, уравнение, два разных уравнения для расчета мощности, общий закон Ома, аудиофизика, электричество, электроника. формула колесо формулы амперы ватты вольты омы уравнение косинуса аудиотехника круговая диаграмма заряд физика мощность звукозапись расчет электротехника формула мощность математика пи физика отношения отношения — sengpielaudio Sengpiel Berlin
Немецкая версия |
Электрический ток , Электроэнергия , Электрическое напряжение
Электричество Заряд
8 и 9 9
Наиболее распространенные общие формулы, используемые в электротехнике
● Основные формулы и Расчеты ●
Связь физических и электрических величин (параметров)
Электрическое напряжение В В , сила тока I , удельное сопротивление
R , импеданс Z ,
мощность и мощность P
Вольт В , ампер А,
8 сопротивление 9
импеданс Ом Ом и Вт Вт
Введите два любых известных значения и нажмите «Рассчитать», чтобы решить для двух других. Пожалуйста, введите только два значения. |
Используемый браузер, к сожалению, не поддерживает Javascript. Программа указана, но собственно функция отсутствует. |
В происходит от «напряжение», а E от «электродвижущая сила (ЭДС)». E означает также энергия , поэтому мы выбираем V . Энергия = напряжение × заряд. Е = В × Q . Некоторым лучше придерживаться E вместо V , так что делайте это. Для R взять Z . |
12 самых важных формул: Напряжение В = I × R = P / I = √( P × R ) в вольт 8 90 с В 060 I = В / Р = P / В = √( P / R ) в амперах A Сопротивление. Ом Ом Мощность P = В × I = R × I 2 = В 2 / R в ваттах Вт |
The Big Power Formulas Расчет электрической и механической мощности (сила) |
|
Андр-Мари Ампре был французским физиком и математиком. Его именем названа единица измерения электрического тока в системе СИ ампер . Алессандро Джузеппе Антонио Анастасио Вольта был итальянским физиком. В его честь была названа единица измерения электрического напряжения в системе СИ вольт . Георг Симон Ом — немецкий физик и математик. Его именем названа единица измерения электрического сопротивления в системе СИ, равная Ом Ом. Джеймс Уатт был шотландским изобретателем и инженером-механиком. Его именем названа единица измерения электрической мощности (мощности) в системе СИ ватт . |
Мощность, как и все размеры энергии, в первую очередь является расчетным значением. |
Слово «усилитель мощности» используется неправильно, особенно в аудиотехнике. Напряжение и ток могут быть усилены. Странный термин «усилитель мощности» стал пониматься как усилитель, предназначенный для управления нагрузкой например громкоговоритель. Мы называем произведение усиления по току и усиления по напряжению «усилением мощности». |
Совет: Треугольник электрического напряжения В = I × R (закон Ома VIR)
Пожалуйста, введите два значения , будет рассчитано третье значение.
Пожалуйста, введите два значений, будет рассчитано третье значение.
С помощью магического треугольника можно легко вычислить все формулы. Вы прячетесь с
пальцем вычисляемое значение. Два других значения показывают, как производить вычисления.
Расчеты: закон Ома — магический треугольник Ома
Измерение входного и выходного импеданса
ПЕРЕМЕННЫЙ ТОК (AC) ~
В l = линейное напряжение (вольт), В p = фазное напряжение (вольт), I l = линейный ток (ампер), ампер)
Z = импеданс (Ом), P = мощность (ватт), φ = угол коэффициента мощности, VAR = вольт-ампер (реактивный)
Ток (одна фаза): I = P / В p × cos φ | Ток (3 фазы): I = P / √3 В l × cos φ или I = P 6 / 03 5 p × cos φ |
Мощность (одна фаза): P = В p × I p ×cos φ | Мощность (3 фазы): P = √3 В л × I l × cos φ или P = √3 V p × I p × φ 1 0 0 60 9060 60 |
Полная мощность S рассчитана по Пифагору, активная мощность P и реактивная мощность Q . S = √( P 2 + Q 2 )
Формулы мощности постоянного тока Напряжение В дюйм (В) расчет по току I дюйм (А) и сопротивлению R дюйм (Ом): В (В) = I (А) R (Ом) Мощность P в (Вт) расчет от напряжения В дюйм (В) и ток I дюйм (А): P (Вт) = В (В) × I 5 6 |
Количество | Имя | Определение |
частота f | герц (Гц) | 1/с |
усилие F | ньютон (Н) | кг · м/с² |
давление р | паскаль (Па) = Н/м² | кг/м · с² |
энергия Е | рабочий джоуль (Дж) = Н · м | кг · м²/с² |
мощность Р | ватт (Вт) = | кг · м²/с³ |
электрический заряд Q | кулон (К) = A · с | А · с |
напряжение В | вольт (В) = Вт/А | кг · м²/А · с³ |
текущий I | ампер (А) = Q/s | А |
емкость Кл | фарад (Ф) = C/V = A · с/В = с/Ом | A² · s 4 /кг · м² |
индуктивность л | Генри (H) = Wb/A = V · с/A | кг · м²/А² · с² |
сопротивление R | Ом (Ом) = В/А | кг · м²A² · с³ |
проводимость Г | Сименс (С) = А/В | A² · с³/кг · м² |
магнитный поток Φ | Вебер (Wb) = V · с | кг · м²/A · с² |
плотность потока B | тесла (T) = Втб/м² = В · с/м² | кг/А · с² |
Поток электрического заряда Q обозначается как электрический ток I. Количество заряда в единицу времени это изменение электрического тока. Ток течет с постоянной величиной I. за время t , он переносит заряд Q = I × t . Для постоянной во времени мощности соотношение между зарядом и током: I = Q/t или Q = I×t. Благодаря этому соотношению основные единицы ампер и секунда кулон в Установлена международная система единиц. Кулоновскую единицу можно представить как 1 C = 1 A × s. Зарядка Q , (единица измерения в ампер-часах Ач), ток разряда I , (единица измерения в амперах А), время t , (единица измерения в часах ч). |
В акустике у нас есть » Акустический эквивалент закона Ома »
Соотношения акустических величин, связанных с плоскими прогрессивными звуковыми волнами
Преобразование многих единиц, таких как мощность и энергия
префиксы |
длина |
площадь |
объем |
вес |
давление |
температура |
время |
энергия |
сила |
плотность |
скорость |
ускорение |
сила
[начало страницы]
задняя часть | Поисковая система | дом |
Энергия и энергия | Клуб электроники
Сила и энергия | Клуб электроники
Сила | Рассчитать |
Перегрев | Энергия
Следующая страница: Переменный, постоянный ток и электрические сигналы
См. также: Напряжение и ток
Что такое сила?
Мощность — это скорость использования или поставки энергии:
Мощность = | Энергия |
Время |
Мощность измеряется в ваттах (Вт)
Энергия измеряется в джоулях (Дж)
Время измеряется в секундах (с) власть часто
измеряется в милливаттах (мВт), 1 мВт = 0,001 Вт. Например, светодиод потребляет около 40 мВт.
а звуковой сигнал потребляет около 100 мВт, даже лампа, такая как лампа накаливания, потребляет всего около 1 Вт.
Типичная мощность, используемая в сетевых электрических цепях, намного больше, поэтому эта мощность может быть
измеряется в киловаттах (кВт), 1 кВт = 1000 Вт. Например, типичная сетевая лампа использует
60 Вт, а чайник потребляет около 3 кВт.
Расчет мощности по току и напряжению
Уравнения
Мощность = ток × напряжение |
Существует три способа записи уравнения для мощности, тока и напряжения:
|
|
Вы можете использовать треугольник PIV, чтобы запомнить эти три уравнения.
Усилитель довольно большой для электроники, поэтому мы часто измеряем силу тока в миллиамперах (мА) и мощность в милливаттах (мВт). 1 мА = 0,001 А и 1 мВт = 0,001 Вт. Расчет мощности с использованием сопротивленияУравненияИспользуя закон Ома V = I × R мы можем преобразовать P = I × V в:
|