Содержание
межосевое расстояние, высота и ширина секции чугунного радиатора
«Все новое – это хорошо забытое старое», говорят люди, но только не про чугунные радиаторы. Размеры, параметры старых моделей легли в основу усовершенствованных конструкций из этого металла. Недаром, многие потребители предпочитают вместо надоевших «гармошек» ставить стильные обогреватели, но снова из чугуна.
Это связано с тем, что на протяжении нескольких десятилетий эти радиаторы были надежными союзниками в борьбе с холодом.
Общие показатели радиаторов из чугуна
По правде говоря, именно из этого металла отопительные устройства больше всего приспособлены к «выживанию» и долгой эксплуатации в условиях централизованного отопления. Начиная с 1857 года, когда были изобретены чугунные радиаторы, они несли тепло в дома жителей разных стран. В настоящее время западные страны перестали использовать этот металл для обогрева жилья, но в СНГ большинство домов 60-70-х годов постройки еще обогреваются с их помощью.
Параметры современных чугунных батарей по некоторым показателям совпадают, хотя и у них, и у старых образцов есть свои преимущества и недостатки.
- Уровень теплоотдачи и мощность – это первые моменты, на которые обращают внимание потребители, выбирая отопительные приборы для своего жилья. Во многом на эти показатели влияют размеры чугунных радиаторов отопления, но средняя мощность одной секции составляет 140-160 Вт.
- Низкая инертность обеспечивает равномерное излучение тепла и длительное остывание конструкции при ее отключении.
- Размер секции чугунного радиатора влияет на его вес. Существуют элементы, которые весят 3 кг, а есть и такие, что 7 кг.
- Средние габариты отопительных приборов из чугуна стали классическим стандартом. Так ширина секции чугунного радиатора равна 80-100 мм, высота от 370 мм до 570 мм, а глубина от 70 мм до 120 мм.
- Объем старых типов радиаторов составляет 1.5 л, у отечественных моделей нового поколения 0. 7-0.8 л, а у зарубежных аналогов – 0.4-0.6 л.
- Рабочее давление – это еще один важный фактор, который следует учитывать при установке радиаторов. Так у советских образцов оно составляло 6-9 атмосфер, а толщина стенок и размер чугунной батареи нового вида позволяют выдерживать нагрузку до 12 атмосфер. Некоторые производители лукавят, когда указывают, что у их чугунных изделий рабочее давление составляет 15-18 атмосфер. На самом деле это опрессовочное давление, которому подвергается каждая батарея на заводе для проверки прочности при гидроударах.
- Заявленный гарантийный срок у чугунных радиаторов составляет 20-35 лет, хотя есть фирмы, дающие своим изделиям 50 лет эксплуатации, и это не удивительно. Такая продолжительная активная «жизнь» этих устройств обусловлена наличием широкого канала, по которому теплоноситель проходит без труда, не оставляя на дне мусора, а на стенках коррозийной накипи.
Это основные показатели, которые присущи многим моделям, но так как сегодня на рынке присутствуют производители разных стран, то и размер секции чугунного радиатора может отличаться, и ее вес, и другие параметры.
Основные размеры чугунных батарей
Хотя главным критерием, который принят всеми изготовителями, считается межосевое расстояние, встречаются изделия, которые при одинаковом этом параметре имеют различия в высоте, глубине и широте.
Основные показатели:
- Межосевое расстояние достаточно разнообразно. Оно может варьировать от 220 мм до 900 мм.
- Высота чугунной батареи колеблется от 330 мм до 950 мм.
- Глубина равна 85-200 мм.
- Встречаются изделия с шириной от 45 мм до 100 мм.
Учитывая такой широкий диапазон, все изделия делятся на низкие чугунные радиаторы отопления, высокие и стандартные. В каждом из этих модельных рядов можно найти и привычные «гармошки», и изделия под старину, и шикарные дворцовые или в стиле модерн, или современные образцы с плоской наружной панелью.
Как правило, для низких моделей место находят в помещениях с панорамными окнами, или там, где слабые стены, например, из гипсокартона. Их межосевое расстояние не превышает 30 см, а высота равна 38.8 см. На отечественном рынке они представлены такими моделями, как МС-110 и 90. У современных низких аналогов основной показатель межосевого расстояния составляет почти 40 см. Самыми популярными являются изделия от таких производителей, как Bolton220 (Турция) и Viadrus (Чехия) – 34 см.
Высота чугунного радиатора стандартного размера опирается на межосевое расстояние 50 см. Если выбирать в квартиру привычного вида советскую «гармошку», то отечественные производители выпускают их под следующей маркировкой: МС-85 и 90, МС-110 и МС-140.
В этом сегменте чаще всего можно найти дизайнерские модели в старинном стиле. Стоят они дорого, но выглядят эффектно, и греют замечательно.
Не следует искать слишком высокий размер секции чугунной батареи. Хотя в новых устройствах вес вдвое меньше, чем в старых, все-таки выше 1 м радиаторов из этого металла не найти. В этом модельном ряду лидируют чугунные батареи от компании Demir Döküm (Турция). Их дизайнерские изделия отличаются оригинальностью, высочайшим качеством чугуна и высокой стоимостью.
Перед тем, как сделать выбор, следует тщательно изучить техпаспорт изделия и ознакомиться с основными его параметрами. Так как любому монтажу радиаторов предшествует расчет мощности по площади помещения, а их размер напрямую влияет на этот параметр, то следует сразу проверить все показатели, чтобы затем не докупать или не снимать секции.
МС-140 – основные параметры
На сегодняшний день из всех моделей, которые устанавливались в свое время в многоквартирных домах, осталась самая популярная из них – МС-140. Самое низкое межосевое расстояние имели радиаторы чугунные 300 мм, а самое высокое – 800 мм. В настоящее время на заводах производится только батареи двух параметров – МС 500 и 300.
Основные показатели:
- Рабочее давление 9 атмосфер.
- Теплоотдача до 175 Вт.
- Состоит из двухканальных секций.
- Радиатор чугунный 500 имеет высоту 50 см, а ширину 9. 8 см.
- Объем теплоносителя составляет 1.35 л.
- Нагрев теплоносителя до +130 градусов.
Благодаря таким параметрам, МС-140 пользуется спросом у населения. Немалую роль в этом играют его низкая стоимость и высокая надежность, проверенная десятилетиями.
Радиаторы отопления STI нова
Если искать стильные батареи из чугуна отечественного производителя, то лучше STI нова не найти. Их основные параметры:
- Радиатор чугунный Нова 500 выдерживает напор до 18 атмосфер. Опрессовочное давление 16 атмосфер позволяет переживать гидроудары централизованной системы обогрева.
- Тепловая мощность конструкции составляет 150 Вт, чего вполне хватит, чтобы обеспечить теплом комнату площадью 15 м2.
- Внешне радиатор отопления Нова 500 (чугунный) выглядят так же стильно, как и алюминиевые аналоги.
Если верить отзывам потребителей, то этот вид отопительного устройства отличается качеством, надежностью и интересным дизайном.
Чугунные батареи Konner
Еще один «любимчик» публики – это фирма Konner, которая смогла найти свое место на российском рынке. Достаточно широкое разнообразие моделей, их цена и надежность сникали ей славу.
Основные параметры изделий:
- Тепловая мощность составляет от 120 Вт до 180 Вт в зависимости от размера. Например, радиатор чугунный 300 мм этой фирмы выдает 120-130 Вт тепла.
- Нагрев воды +110 градусов.
- Рабочее давление равно 12 атмосферам, при проверочном напоре – 20 атмосфер.
Размеры и стильный вид позволяют устанавливать батареи этого типа не только под окнами, если того требует дизайн помещения.
Сегодня на рынке присутствуют десятки производителей чугунных батарей. Все они соответствуют параметрам отечественной теплосети, имеют доступную цену, надежны в эксплуатации и отлично смотрятся в интерьере.
Размеры чугунных радиаторов отопления в зависимости от типа и модели
Содержание
- 1 Какими бывают размеры чугунных батарей
- 2 Низкие чугунные отопительные устройства
- 3 Стандартные отопительные устройства
- 4 Высокие радиаторы
Во время выбора чугунных батарей особое внимание нужно обращать на размер, чтобы обеспечить максимальную эффективность работы отопительного устройства с минимальными потерями тепла.
Какими бывают размеры чугунных батарей
Размеры таких радиаторов очень разнообразны. Даже одинаковые по этому параметру чугунные изделия имеют разные высоту, глубину и ширину секции.
Размеры являются такими:
- Межосевое расстояние равняется 220-900 мм.
- Высота колеблется в пределах 330-954 мм.
- Глубина – 85-200 мм.
- Ширина – 45-108 мм.
Радиаторы делят на:
- Низкие.
- Стандартные.
- Высокие.
В каждую из этих групп входят разные по способу оформления батареи. Привычную всем «гармошку»можно увидеть в стиле модерн, дворцовом, современном и ретро стилях. Каждый из них отличается формой секции, ее шириной и глубиной. Общие для всех стилей — это величина межосевого расстояния.
Низкие чугунные отопительные устройства
Наиболее известный низкий радиатор-гармошка — это МС-140М-300-0.9 (изготавливают белорусы). Ее размеры:
- Межосевое расстояние – 0,3 м.
- Высота – 0,388 м.
- Глубина – 0,14 см.
- Ширина — 0,93 см.
Еще двумя популярными моделями устройств типа «гармошка» можно назвать МС-110 и МС-90. У них величина межниппельного расстояния составляет 0,3 м, высота колеблется от 0,382 до 0,388 м. Также распространены изделия с расстоянием между осями 0,35 м.
Самые низкие чугунные батареи достигают 0,4 м.
Дизайн-радиаторы — самые низкие. BOLTON 220 достигает 33 см, а изделия Hellas 270 от Viadrus – 34 см. Большинство представителей дизайнерских отопительных приборов доходят до 40 см.
Стандартные отопительные устройства
Они представлены многими группами. У всех одинаковое межцентровое расстояние 0,5 м. Моделями с формой «гармошка» являются МС-85, МС-90, МС-110 и МС-140. Цифры в названии свидетельствуют, насколько глубокие секции.
Что касается батарей отопления, сделанных в стиле ретро, то даже одна модель одного производителя может иметь различную высоту. Причина заключается в наличии или отсутствии ножек. Представителями этой группы являются модели Modern 500 и DERBY M 500.
Размеры первой:
- Высота равняется 64,5 см.
- Глубина составляет 10 см.
- Ширина секции равна 4,5 см.
Если ножек нет, то она достигает 57,2 см.
DERBY M 500 имеет такие размеры:
- 66 см.
- 17,4 см.
- 6,3 см.
Особенность некоторых моделей заключается в том, что они имеют нелинейную форму. Поэтому производители не указывают глубину.
Высокие радиаторы
Они никогда не бывают выше 1 м. Эта величина составляет 0,96-0,98 м и включает величину ножек.
«Гармошка» никогда не бывает выше 0,585 м. Спектр высоких чугунных отопителей очень узок. Это обусловлено особенностями чугуна. Сплав имеет большой вес, а также он хрупкий. Теплоемкость высокой секции становится большой.
Известными высокими чугунными радиаторами являются Demrad Ridem и Demrad Retro. Максимальная высота некоторых моделей из этих двух линеек составляет 0,954 м, а минимальная 0,661 м. Ширина и глубина ретро- изделий равна 76 и 203 мм. Высокие представители линейки Demrad Ridem (выполнены в современном стиле) имеют глубину и ширину 98,2 и 60 мм.
BU-302: Последовательная и параллельная конфигурации батарей
BU-302: Конфигурации батарей в серии и паралело (Испания)
Батареи достигают требуемого рабочего напряжения путем последовательного соединения нескольких элементов; каждая ячейка добавляет свой потенциал напряжения, чтобы получить общее напряжение на клеммах. Параллельное соединение обеспечивает более высокую пропускную способность за счет суммирования общего ампер-часа (Ач).
Некоторые блоки могут состоять из комбинации последовательных и параллельных соединений. Аккумуляторы для ноутбуков обычно состоят из четырех последовательно соединенных литий-ионных элементов на 3,6 В для достижения номинального напряжения 14,4 В и двух параллельно для увеличения емкости с 2400 мАч до 4800 мАч. Такая конфигурация называется 4s2p, что означает четыре ячейки последовательно и две параллельно. Изолирующая фольга между элементами предотвращает короткое замыкание из-за проводящей металлической оболочки.
Большинство химий для батарей подходят для последовательного и параллельного соединения. Важно использовать аккумуляторы одного типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать аккумуляторы разных производителей и размеров. Более слабая клетка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи зависит от самого слабого звена в цепи. Аналогией является цепочка, в которой звенья представляют собой элементы батареи, соединенные последовательно ( рис. 1 ).
Рисунок 1: Сравнение батареи с цепью. Звенья цепи представляют собой ячейки, соединенные последовательно для увеличения напряжения, удвоение звена означает параллельное соединение для увеличения нагрузки по току. |
Слабая ячейка может не выйти из строя сразу, но быстрее, чем сильные, при нагрузке. При зарядке батарея с низким уровнем заряда заполняется раньше, чем батарея с сильным зарядом, потому что ее меньше нужно заполнить, и она остается в состоянии перезарядки дольше, чем другие. При разряде слабая клетка опустошается первой, и ее забивают более сильные братья. Ячейки в мультиупаковках должны быть подобраны, особенно при использовании под большими нагрузками. (См. BU-803a: Несоответствие ячеек, Балансировка).
Одноэлементные приложения
Конфигурация с одним элементом представляет собой простейшую аккумуляторную батарею; ячейка не нуждается в согласовании, а схема защиты на небольшой литий-ионной ячейке может быть простой. Типичными примерами являются мобильные телефоны и планшеты с одним литий-ионным аккумулятором 3,60 В. Другими вариантами использования одного элемента являются настенные часы, в которых обычно используется щелочной элемент на 1,5 В, наручные часы и резервная память, большинство из которых являются приложениями с очень низким энергопотреблением.
Номинальное напряжение элемента для никелевой батареи 1,2В, щелочной 1,5В; оксид серебра — 1,6 В, а свинцово-кислотный — 2,0 В. Первичные литиевые батареи находятся в диапазоне от 3,0 В до 3,9 В.В. Li-ion 3,6В; Li-фосфат — 3,2 В, а Li-титанат — 2,4 В.
Литий-марганцевые и другие системы на основе лития часто используют напряжение элемента 3,7 В и выше. Это связано не столько с химией, сколько с продвижением более высоких ватт-часов (Втч), что стало возможным при более высоком напряжении. Аргумент состоит в том, что низкое внутреннее сопротивление ячейки поддерживает высокое напряжение под нагрузкой. Для оперативных целей эти элементы используются как кандидаты на 3,6 В. (См. BU-303 Путаница с напряжениями)
Последовательное соединение
Портативное оборудование, требующее более высокого напряжения, использует аккумуляторные блоки с двумя или более ячейками, соединенными последовательно. На рис. 2 показан аккумуляторный блок с четырьмя последовательно соединенными литий-ионными элементами 3,6 В, также известными как 4S, для получения номинального напряжения 14,4 В. Для сравнения, шестиэлементная свинцово-кислотная цепь с напряжением 2 В на элемент будет генерировать 12 В, а четыре щелочных элемента с напряжением 1,5 В на элемент — 6 В.
Рис. 2: Последовательное соединение четырех ячеек (4s) [1]
Добавление ячеек в цепочку увеличивает напряжение; емкость остается прежней.
Если вам нужно нечетное напряжение, скажем, 9,50 вольт, подключите последовательно пять свинцово-кислотных, восемь NiMH или NiCd или три Li-ion. Конечное напряжение батареи не обязательно должно быть точным, если оно выше, чем указано в устройстве. Источник питания 12 В может работать вместо 9,50 В. Большинство устройств с батарейным питанием могут выдерживать некоторое перенапряжение; однако необходимо соблюдать конечное напряжение разряда.
Высоковольтные батареи имеют небольшой размер проводника. Аккумуляторные электроинструменты работают от аккумуляторов 12 В и 18 В; модели высокого класса используют 24 В и 36 В. Большинство электронных велосипедов поставляются с литий-ионным аккумулятором на 36 В, некоторые на 48 В. Автомобильная промышленность хотела увеличить стартерную батарею с 12 В (14 В) до 36 В, более известную как 42 В, путем последовательного размещения 18 свинцово-кислотных элементов. Логистика замены электрических компонентов и проблемы с искрением на механических переключателях сорвали переезд.
Некоторые автомобили с мягким гибридом работают на литий-ионном аккумуляторе 48 В и используют преобразование постоянного тока в 12 В для электрической системы. Запуск двигателя часто осуществляется от отдельной свинцово-кислотной батареи 12 В. Ранние гибридные автомобили работали от батареи 148 В; электромобили обычно 450–500 В. Для такой батареи требуется более 100 литий-ионных элементов, соединенных последовательно.
Высоковольтные батареи требуют тщательного подбора элементов, особенно при работе с тяжелыми грузами или при низких температурах. При наличии нескольких ячеек, соединенных в цепочку, вероятность отказа одной ячейки вполне реальна, и это приведет к отказу. Чтобы этого не произошло, твердотельный переключатель в некоторых больших блоках обходит неисправную ячейку, чтобы обеспечить непрерывный ток, хотя и при более низком напряжении цепи.
Сопоставление ячеек представляет собой проблему при замене неисправной ячейки в стареющем блоке. Новая ячейка имеет более высокую емкость, чем другие, что вызывает дисбаланс. Сварная конструкция усложняет ремонт, поэтому аккумуляторы обычно заменяют целиком.
Высоковольтные аккумуляторные батареи в электромобилях, полная замена которых была бы запредельной, разделяют на модули, каждый из которых состоит из определенного количества ячеек. Если одна ячейка выходит из строя, заменяется только поврежденный модуль. Небольшой дисбаланс может возникнуть, если новый модуль оснащен новыми ячейками. (см. БУ-910: Как отремонтировать блок батарей)
На рис. 3 показан блок батарей, в котором «ячейка 3» выдает только 2,8 В вместо полных номинальных 3,6 В. При пониженном рабочем напряжении эта батарея достигает конечной точки разрядки раньше, чем обычная батарея. Напряжение падает, и устройство выключается с сообщением «Низкий заряд батареи».
Рис. 3: Последовательное соединение с неисправной ячейкой [1]
Неисправная ячейка 3 снижает напряжение и преждевременно отключает оборудование.
Батареи в дронах и пультах дистанционного управления для любителей, требующих высокого тока нагрузки, часто демонстрируют неожиданное падение напряжения, если один элемент в цепочке разряжен. Потребление максимального тока нагружает хрупкие клетки, что может привести к сбою. Чтение напряжения после зарядки не позволяет выявить эту аномалию; изучение баланса ячеек или проверка емкости с помощью анализатора батареи.
Подсоединение к последовательной цепочке
Существует обычная практика подсоединения к последовательной цепочке свинцово-кислотной батареи для получения более низкого напряжения. Тяжелому оборудованию, работающему от аккумуляторной батареи 24 В, может потребоваться источник питания 12 В для вспомогательной работы, и это напряжение удобно доступно на полпути.
Нажатие не рекомендуется, так как это создает дисбаланс ячеек, так как одна сторона блока батарей нагружена больше, чем другая. Если несоответствие не может быть исправлено специальным зарядным устройством, побочным эффектом является сокращение срока службы батареи. И вот почему:
При зарядке разбалансированного блока свинцово-кислотных аккумуляторов с помощью обычного зарядного устройства недозаряженная секция имеет тенденцию к сульфатации, поскольку элементы никогда не получают полного заряда. Высоковольтная часть батареи, которая не получает дополнительной нагрузки, имеет тенденцию к перезарядке, что приводит к коррозии и потере воды из-за газовыделения. Обратите внимание, что зарядное устройство, заряжающее всю цепочку, смотрит на среднее напряжение и соответствующим образом прекращает заряд.
Врезка также распространена в литий-ионных и никелевых батареях, и результаты аналогичны свинцово-кислотным: сокращается срок службы. (См. BU-803a: Сопоставление и балансировка ячеек. ) В новых устройствах используется преобразователь постоянного тока для подачи правильного напряжения. В качестве альтернативы электрические и гибридные автомобили используют отдельную низковольтную батарею для вспомогательной системы.
Параллельное соединение
Если требуются более высокие токи, а более крупные элементы недоступны или не соответствуют конструктивным ограничениям, один или несколько элементов могут быть соединены параллельно. Большинство химических элементов аккумуляторов допускают параллельные конфигурации с небольшим побочным эффектом. На рис. 4 показаны четыре ячейки, соединенные параллельно по схеме P4. Номинальное напряжение показанного блока остается на уровне 3,60 В, но емкость (Ач) и время работы увеличены в четыре раза.
Рис. 4: Параллельное соединение четырех элементов (4p) [1]
При использовании параллельных элементов емкость в Ач и время работы увеличиваются, а напряжение остается прежним.
Ячейка, которая развивает высокое сопротивление или размыкается, менее критична в параллельной цепи, чем в последовательной конфигурации, но неисправная ячейка снизит общую нагрузочную способность. Это похоже на двигатель, работающий только на трех цилиндрах, а не на всех четырех. С другой стороны, короткое замыкание более серьезно, так как неисправная ячейка отбирает энергию у других ячеек, вызывая опасность возгорания. Большинство так называемых электрических коротких замыканий носят легкий характер и проявляются в виде повышенного саморазряда.
Полное замыкание может произойти из-за обратной поляризации или роста дендритов. Большие блоки часто включают в себя предохранитель, который отключает неисправную ячейку от параллельной цепи в случае ее короткого замыкания. На рис. 5 показана параллельная конфигурация с одной неисправной ячейкой.
Рис. 5: Параллельное соединение/соединение с одной неисправной ячейкой [1]
Слабая ячейка не повлияет на напряжение, но обеспечит малое время работы из-за пониженной емкости. Закороченная ячейка может вызвать чрезмерный нагрев и стать причиной возгорания. В больших упаковках предохранитель предотвращает большой ток, изолируя ячейку.
Последовательное/параллельное соединение
Последовательное/параллельное соединение, показанное на рис. 6, обеспечивает гибкость конструкции и позволяет достичь требуемых значений напряжения и тока при стандартном размере ячейки. Полная мощность представляет собой сумму напряжения, умноженного на ток; ячейка 3,6 В (номинальное значение), умноженное на 3400 мАч, дает 12,24 Втч. Четыре энергоячейки 18650 по 3400 мАч каждая могут быть соединены последовательно и параллельно, как показано, чтобы получить номинальное напряжение 7,2 В и общую мощность 48,96 Втч. Комбинация с 8 ячейками даст 97,92 Втч, допустимый предел для провоза на борту самолета или перевозки без опасных материалов класса 9. (См. BU-704a: Перевозка литиевых батарей по воздуху.) Тонкая ячейка обеспечивает гибкую конструкцию упаковки, но необходима схема защиты.
Рисунок 6: Последовательное/параллельное соединение четырех ячеек (2s2p) [1]
Эта конфигурация обеспечивает максимальную гибкость конструкции. Параллельное соединение ячеек помогает в управлении напряжением. Литий-ионные аккумуляторы
хорошо подходят для последовательно-параллельных конфигураций, но ячейки нуждаются в мониторинге, чтобы оставаться в пределах ограничений по напряжению и току. Интегральные схемы (ИС) для различных комбинаций элементов позволяют контролировать до 13 литий-ионных элементов. Для более крупных блоков требуются специальные схемы, и это относится к батареям для электронных велосипедов, гибридным автомобилям и Tesla Model 85, которая потребляет более 7000 элементов 18650, чтобы составить 9 аккумуляторов.Пакет 0кВтч.
Терминология для описания последовательного и параллельного соединения
В производстве аккумуляторов сначала указывается количество элементов, соединенных последовательно, а затем количество элементов, размещенных параллельно. Пример 2с2п. При использовании литий-ионных аккумуляторов параллельные струны всегда изготавливаются первыми; завершенные параллельные блоки затем размещаются последовательно. Li-ion — это система, основанная на напряжении, которая хорошо подходит для параллельного формирования. Объединение нескольких ячеек в параллель, а затем последовательное добавление блоков снижает сложность управления напряжением для защиты батареи.
Сначала сборка последовательно соединенных цепочек, а затем размещение их параллельно может быть более распространенным с NiCd-аккумуляторами, чтобы обеспечить химический челночный механизм, который уравновешивает заряд в верхней части заряда. «2с2п» распространено; были выпущены официальные документы, в которых говорится о 2p2, когда последовательная строка параллельна.
Устройства безопасности при последовательном и параллельном соединении
Реле положительного температурного коэффициента (PTC) и устройства прерывания заряда (CID) защищают батарею от перегрузки по току и избыточного давления. Несмотря на то, что эти защитные устройства рекомендуются для обеспечения безопасности в небольших 2- или 3-элементных батареях с последовательной и параллельной конфигурацией, эти защитные устройства часто не используются в больших многоэлементных батареях, например, в батареях для электроинструментов. PTC и CID работают, как и ожидалось, переключая элемент при избыточном токе и внутреннем давлении в элементе; однако отключение происходит в каскадном формате. Хотя некоторые ячейки могут выйти из строя раньше, ток нагрузки вызывает избыточный ток в остальных ячейках. Такое состояние перегрузки может привести к тепловому разгону до того, как сработают остальные предохранительные устройства.
Некоторые ячейки имеют встроенные PCT и CID; эти защитные устройства также могут быть добавлены задним числом. Инженер-конструктор должен знать, что любое предохранительное устройство может выйти из строя. Кроме того, PTC индуцирует небольшое внутреннее сопротивление, уменьшающее ток нагрузки. (См. также BU-304b: Обеспечение безопасности литий-ионных аккумуляторов)
Простые рекомендации по использованию бытовых первичных аккумуляторов
- Следите за чистотой контактов аккумулятора. Конфигурация с четырьмя ячейками имеет восемь контактов, и каждый контакт добавляет сопротивление (ячейка к держателю и держатель к следующей ячейке).
- Никогда не смешивайте батареи; заменить все клетки, когда слабые. Общая производительность соответствует самому слабому звену в цепи.
- Соблюдайте полярность. Перевернутая ячейка вычитает, а не добавляет к напряжению ячейки.
- Извлекайте батареи из оборудования, когда оно больше не используется, чтобы предотвратить утечку и коррозию. Это особенно важно для первичных элементов цинк-углерод.
- Не храните незакрепленные элементы в металлическом ящике. Поместите отдельные элементы в небольшие пластиковые пакеты, чтобы предотвратить короткое замыкание. Не носите незакрепленные ячейки в карманах.
- Храните батареи в недоступном для детей месте. В дополнение к опасности удушья, ток батареи может привести к изъязвлению стенки желудка при проглатывании. Батарея также может разорваться и вызвать отравление. (См. BU-703: Аккумуляторы, опасные для здоровья)
- Не перезаряжайте неперезаряжаемые аккумуляторы; накопление водорода может привести к взрыву. Выполняйте экспериментальную зарядку только под наблюдением.
Простые рекомендации по использованию дополнительных батарей
- Соблюдайте полярность при зарядке вторичного элемента. Неправильная полярность может вызвать короткое замыкание, что приведет к опасной ситуации.
- Извлеките полностью заряженные аккумуляторы из зарядного устройства. Потребительское зарядное устройство может не обеспечивать правильную подзарядку при полной зарядке, и аккумулятор может перегреться.
- Заряжайте только при комнатной температуре.
Каталожные номера
[1] Предоставлено Cadex
Запчасти для насосов серии O’Drill MCM 118 – износостойкая пластина из чугуна – 11
Запчасти для насосов серии O’Drill MCM 118 — изнашиваемая пластина из чугуна — 11
- Артикул:
- ODP18WPC
- Производитель: org/Brand»>
- Описание:
- Изнашиваемая пластина Чугун
- Артикул №:
- 11
- Вес:
- 6,50 фунтов
О’Дрилл МКМ
Звоните, чтобы узнать цену: 800-333-3331
- Артикул:
- ODP18WPC
- Производитель: org/Brand»>
- Описание:
- Изнашиваемая пластина из чугуна
- Артикул №:
- 11
- Вес:
- 6,50 фунтов
О’Дрилл МКМ
Звоните, чтобы узнать цену: 800-333-3331
Текущий запас:
Свяжитесь с нами для получения информации о дополнительных размерах рабочего колеса. Все размеры рабочего колеса, указанные ниже, составляют 8 1/2″.