Реактивная мощность простыми словами: Реактивная мощность

Активная, реактивная и полная (кажущаяся) мощности

Активная, реактивная и полная (кажущаяся) мощности


Простое объяснение с формулами


Активная мощность (P)


Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть


P = V I


потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.


Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:


P = V I Cosθ


В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = V I.


Формулы для активной мощности


P = V I — в цепях постоянного тока


P = V I cosθ — в однофазных цепях переменного тока


P = √3 VL IL cosθ — в трёхфазных цепях переменного тока


P = 3 VPh IPh cosθ


P = √ (S2 – Q2) или


P =√ (ВА2 – вар2) или


Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или


кВт = √ (кВА2 – квар2)


Реактивная мощность (Q)


Также её мощно было бы назвать бесполезной или безваттной мощностью.


Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).


Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.


Реактивная мощность определяется, как


Q = V I sinθ


и может быть положительной (+Ve) для индуктивной нагрузки и отрицательной (-Ve) для емкостной нагрузки.


Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.


Формулы для реактивной мощности


Q = V I sinθ


Реактивная мощность = √ (Полная мощность2 – Активная мощность2)


вар =√ (ВА2 – P2)


квар = √ (кВА2 – кВт2)


Полная мощность (S)


Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.


Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.


Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.


Формула для полной мощности


S = V I


Полная мощность = √ (Активная мощность2 + Реактивная мощность2)


kVA = √(kW2 + kVAR2)


Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.


Все эти величины тригонометрически соотносятся друг с другом, как показано на рисунке:

Что такое реактивная энергия или реактивная мощность?

Когда речь идет об электрических приборах, чаще всего интересуются их электрической мощностью. При этом считается, что чем больше эта мощность, обычно указываемая в документации, приложенной к электроизделию, тем большую полезную работу можно получить от этого изделия.

Электроприборы представляют собой нагрузку, которая для переменного тока имеет разную величину. Так все нагревательные приборы: лампы накаливания, ТЭНы в утюгах, электрических плитах, электрочайниках, стиральных машинах, электрообогревателях и т. п., это активные нагрузки. Все виды трансформаторов, стабилизаторов, электродвигателей – в стиральных машинах, кондиционерах, вентиляторах, отопительных приборах, электроинструменте, насосах для полива и для отопления, газонокосилках, измельчителях веток (шредерах ) и мн. др. – это нагрузки активно-индуктивные. Люминесцентные лампы и светильники, энергосберегающие компактные лампы (КЛЛ) и пр. – это активно-емкостные нагрузки.

Реактивной называется энергия возникающая при прохождении переменного электрического тока через катушку индуктивности (образуется магнитное поле) или через конденсатор (образуется электрическое поле). Она может увеличиваться или уменьшаться. При увеличении она потребляет мощность из сети, при уменьшении – отдает обратно в сеть.

В домашней электрической сети действует переменное напряжение, величина которого 220 В, а частота 50 Гц. По форме это синусоида, которая 100 раз в секунду переходит через «0». В этот момент происходит смена направления движения тока. При подключении этого напряжения к нагрузке, которая имеет только активную составляющую, ток в цепи по фазе (по моменту действия) полностью совпадает с напряжением. Т. е. при нарастании тока идет нарастание напряжения, при спаде напряжения спадает и ток, при переходе напряжения через «0» ток в это же мгновение тоже переходит через «0». Если нагрузка имеет индуктивную составляющую, то ток начинает отставать от напряжения. Напряжение растет, перейдя через «0», а ток еще может даже не дошел до «0», напряжение уже начало уменьшаться после максимума, а ток опаздывает, т. к. он еще увеличивается. И чем больше индуктивность обмотки двигателя или трансформатора, тем больше это расхождение по фазе. При активной составляющей нагрузки близкой или равной «0» (когда трансформатор включен в сеть, а нагрузки на нем нет) ток запаздывает почти на 90°, т. е. на четверть периода.

В случае емкостной нагрузки процесс тот же, но только ток опережает напряжение.

Происходят эти процессы потому, что в первом случае ток, протекающий по катушке индуктивности (обмотке двигателя или трансформатора) создает каждым витком катушки магнитное поле. А т. к. ток изменяется – нарастает или спадает, то суммарное поле тоже увеличивается или уменьшается. Изменяющееся магнитное поле по закону электромагнитной индукции (закону Майкла Фарадея) наводит в соседних витках той же катушки или соседней с ней, например вторичной катушке трансформатора э. д.с. самоиндукции такой же по величине, но обратной по знаку. Эта э.д.с., вызывает в своей нагрузке, которой является уже питающая сеть такой же изменяющийся ток, но обратного направления. Этот новый ток опять по тому же закону М. Фарадея образует обратное по направлению изменяющееся магнитное поле и процесс повторяется. Пока по обмотке течет переменный ток, в ней будет создаваться переменное магнитное поле. И чем больше индуктивность, тем больше поле. При выключении тока поле исчезнуть мгновенно не может, поэтому оно на контактах выключателя может образовать электрический дуговой разряд. Если его нет, то поле разряжается через маленькое активное сопротивление катушки. Т. е. когда ток увеличивается, катушка запасает энергию, а когда начинает уменьшаться – катушка отдает ее обратно в сеть. Нагрузка не включена, тока на выходе нет, а напряжение есть, и трансформатор гоняет энергию в обмотку и из обмотки. Эти токи на активном сопротивлении проводов вызывают тепловые потери. Они по величине невелики, но они есть. Похожие процессы происходят и при емкостном характере нагрузки. Отличие лишь в том, что поле не магнитное, а электрическое.

Таким образом, работы нет, а потери присутствуют.

Те же процессы происходят и при включении нагрузки. Но на фоне больших рабочих токов, протекающих при этом, реактивные токи мало заметны.

Уменьшить эти токи можно подключением к индуктивным цепям конденсаторов, а к емкостным, соответственно, индуктивностей. Это называется компенсированием реактивных составляющих.

Оценить реактивную составляющую можно по Км – коэффициенту мощности или по cos φ. При этом cos φ = Р/S, где:

  • Р – активная мощность, обеспечивающая рабочие характеристики;
  • S – полная мощность, потребляемая устройством.

При cos φ = 1 – вся мощность устройства активная, при меньших значениях – появляется реактивная составляющая. Мощность потребляемая растет, а работа остается та же.

Например, если на дрели и вентиляторе написано, что его мощность 600 Вт, а cos φ = 0,75, то их реальная мощность, потребляемая из сети будет равна 800 Вт, а работу они сделают на 600 Вт.

Правильная компенсация реактивной мощности дает возможность уменьшить мощность, передаваемую по кабельным и проводным сетям предприятия. Это позволяет снизить расход до 10-20 %, а в тех случаях, когда cos φ = 0,5 и даже менее его, результат может быть до 1/3.Предприятия с большим количеством мощных недогруженных электродвигателей должны компенсировать их реактивную мощность.

Небольшие организации, офисы, торговые предприятия могут иметь большую реактивную составляющую за счет люминесцентных источников освещения, двигателей вентиляции приточной и вытяжной, кондиционеров, приводов теплоснабжения и водоснабжения и другой нелинейной нагрузки. К такой нагрузке могут относиться тиристорные и симисторные регуляторы систем освещения, импульсные блоки питания и мн. др. Все эти виды потребителей электроэнергии используют в своей работе импульсный режим, при этом этот режим часто сопровождается крутыми передними и задними фронтами импульсов (нарастанием и спаданием тока и напряжения). Специалисты эти фронты называют передним и задним. И чем меньше длительность переднего и заднего фронтов, тем больше в питающую сеть переменного тока проникает гармоник (напряжений удвоенной, утроенной и т. д. частоты) основного напряжения, тем меньше cos φ.

Поэтому передовые производители современных компактных люминесцентных ламп (КЛЛ) заботятся об энергетической эффективности не только самой лампы, но и всей электрической сети, используемой для их питания. Для этого они, незначительно усложнив схему их питания, получают коэффициент мощности, равный 0,92 – 0,97. В то же время простые КЛЛ имеют его значительно меньшей величины, а обычные традиционные люминесцентные «трубки» с электромагнитным пуско-регулирующим аппаратом имеют коэффициент мощности вообще равный 0,5.

Поэтому, выбирая для своей квартиры или офиса малогабаритные энергосберегающие высокоэффективные источники света в виде КЛЛ, обязательно интересуйтесь таким их параметром, как коэффициент мощности. И если он не указан в параметрах продаваемой лампы, то лучше отказаться от такой покупки.

Предлагаем приобрести качественные энергосберегающие лампы:

B60 10W PA10 E27 4000

Наименование: Лампа светодиодная стандартная B60 PA-10 10W E27 4000K алюмопл. корп. 18-0007
Тип лампы: Стандартная
Артикул: 18-0007
Мощность (W): 10
Тип цоколя: E27
Cветовой поток (lm): 806
Световая эффективность (lum/W): 81
Ширина B (мм): 60
Высота A (мм): 110
Температура (К): 4000
Тип света: нейтральный свет
Напряжение (V): 175-250
Ресурс , часов: 25000
Срок службы, лет: 17
Индекс цветопередачи (Ra): 80
Аналог лампы накаливания (W): 75Вт
Частота электросети (Hz): 50
Температурный режим (град): -20С +40°C
Количество в ящике, шт: 50
Содержание ртути (мг): 0
Класс энергосбережения: A
Штрих код упаковки: 4895127204464
Тип колбы: Стандартная
Цвет стекла: Опаловый
Угол рассеивания град: 220
Производитель: ELM
Гарантия: 2 года

(Код: 18-0007Ind)

58. 49 грн

Тип лампы: Стандартная
Мощность (W): 10
Температура (K): 4000
Тип цоколя: E27

Купить

A60 10W PA LS-32 E27 3000 PERFECT

Наименование: Лампа светодиодная стандартная LS-32 10W E27 3000K алюмопл. корп. A-LS-1399
Тип лампы: Стандартная
Артикул: A-LS-1399
Мощность (W): 10
Тип цоколя: E27
Cветовой поток (lm): 900
Световая эффективность (lum/W): 90
Ширина B (мм): 60
Высота A (мм): 120
Температура (К): 3000
Тип света: теплый свет
Напряжение (V): 175-250
Ресурс , часов: 25000
Срок службы, лет: 17
Индекс цветопередачи (Ra): 80
Аналог лампы накаливания (W): 75Вт
Частота электросети (Hz): 50
Температурный режим (град): -20С +40°C
Количество в ящике, шт: 50
Содержание ртути (мг): 0
Класс энергосбережения: A
Штрих код упаковки: 4895127211073
Тип колбы: Стандартная
Цвет стекла: Опаловый
Угол рассеивания град: 200
Производитель: ELECTRUM
Гарантия: 3 года

(Код: A-LS-1399)

107. 03 грн

Тип лампы: Стандартная
Мощность (W): 10
Температура (K): 3000
Тип цоколя: E27

Купить

A60 10W PA LS-V10 E27 4000

Наименование: Лампа светодиодная стандартная LS-V10 10W E27 4000K алюмопл. корп. A-LS-1520
Артикул: A-LS-1520
Мощность: 10
Световой поток: 900
Тип лампы: Стандартная
Напряжение (V): 220
Цветовая температура К: 4000
Тип цоколя: E27
Группа: Лампы
Подгруппа: Лампы светодиодные (LED)
Модель: ls-V10
Тип колбы: Стандартная
Цвет стекла: Опаловый
Тип светодиода: SMD
Угол рассеивания, (C): 270
Ресурс часов: 25000
A mm: 110
B mm: 60
Штрих код упаковки: 4895127217815
Количество в упаковке шт.: 50
Производитель: Electrum

(Код: A-LS-1520)

82.49 грн

Наименование: Лампа светодиодная стандартная LS-V10 10W E27 4000K алюмопл. корп. A-LS-1520
Артикул: A-LS-1520
Мощность: 10
Тип цоколя: E27

Купить

B60 10W PA10L E27 3000 3 шт.

Наименование: Комплект ламп светодиодных стандартных B60 PA10L 10W E27 3000K алюмопл. корп. 3шт. 18-0120
Артикул: 18-0120
Мощность: 10
Световой поток: 750
Тип лампы: Стандартная
Напряжение (V): 220
Цветовая температура К: 3000
Тип цоколя: E27
Группа: Лампы
Подгруппа: Лампы светодиодные (LED)
Модель: PA10L
Тип колбы: Стандартная
Цвет стекла: Опаловый
Тип светодиода: SMD
Угол рассеивания, (C): 250
Ресурс часов: 20000
A mm: 109
B mm: 60
Штрих код упаковки: 4895127203382
Количество в упаковке шт.: 40/120
Производитель: ELM

(Код: 18-0120)

215.98 грн

Наименование: Комплект ламп светодиодных стандартных B60 PA10L 10W E27 3000K алюмопл. корп. 3шт. 18-0120
Артикул: 18-0120
Мощность: 10
Тип цоколя: E27

Купить

Что такое реактивная мощность? — Определение из Techopedia

Что означает реактивная мощность?

В системах электросетей реактивная мощность — это мощность, которая возвращается от места назначения к сети в сценарии с переменным током.

Объявления

В системе постоянного тока напряжение и нагрузка статичны, и, проще говоря, направление энергии «одностороннее», но в системе переменного тока есть разные фазы, связанные с элементами системы, такие как конденсаторы и катушки индуктивности.

Реактивная мощность возвращает энергию обратно в сеть во время пассивных фаз.

Реактивная мощность также известна как: фантомная мощность.

Techopedia объясняет реактивную мощность

Другой способ объяснить это состоит в том, что реактивная мощность — это результирующая мощность в ваттах цепи переменного тока, когда форма волны тока не совпадает по фазе с формой волны напряжения, обычно на 90 градусов, если нагрузка чисто реактивная и является результатом либо емкостной, либо индуктивной нагрузки.

Фактическая работа выполняется только тогда, когда ток совпадает по фазе с напряжением, например, при активной нагрузке. Примером является питание лампы накаливания; в реактивной нагрузке энергия течет к нагрузке половину времени, тогда как в другой половине мощность течет от нее, что создает иллюзию того, что нагрузка не рассеивает и не потребляет мощность.

Три вида мощности

Реактивная мощность — это один из трех типов мощности, присутствующих в цепях с нагрузкой.

Истинная сила

Фактическая мощность в ваттах, рассеиваемая цепью

Реактивная мощность

Рассеиваемая мощность от индуктивных и емкостных нагрузок, измеряемая в реактивных вольтамперах (ВАР)

Полная мощность

Комбинация реактивной и истинной мера мощности в вольт-амперах (ВА)

Реактивная мощность также называется «фантомной мощностью», потому что неизвестно, куда она уходит. Общеизвестно, что реактивные нагрузки, такие как конденсаторы и катушки индуктивности, на самом деле не рассеивают мощность в том смысле, что она не используется для их питания, но измерение напряжения и тока вокруг них показывает тот факт, что они падают напряжение и потребляют ток.

Мощность, рассеиваемая при этом падении напряжения и потребляемом токе, представляет собой тепло или ненужную энергию и не выполняется как реальная работа; поэтому инженеры искали способы уменьшить это. Из-за этой фантомной мощности проводники и генераторы должны быть рассчитаны и рассчитаны соответственно, чтобы нести общий ток, включая отходы, а не только ток, который выполняет фактическую работу.

A Часовой маятник

Некоторые эксперты в области энергетики говорят о реактивной мощности как о части движения конденсатора, которое напоминает движение часового маятника от зенита до надира. В этой аналогии, когда маятник качается вверх, переменный ток подает активную мощность на целевое устройство. Когда маятник качается обратно вниз, реактивная мощность возвращается в сеть для поглощения.

В определениях такого типа эксперты сказали бы, что реактивная энергия — это энергия, циркулирующая туда и обратно между источником и нагрузкой, в частности, что реактивная мощность «затухает» обратно к источнику. В некотором смысле это связано с задержкой между током и напряжением. В дополнение к конденсаторам для регулирования реактивной мощности в системе можно использовать статические компенсаторы реактивной мощности и синхронные конденсаторы.

Ключевым моментом является размещение оборудования реактивного тока вблизи силовых нагрузок. Это уменьшает количество реактивного тока, который система доставки должна переносить на определенное расстояние.

Реактивная мощность в сети

Чтобы иметь дело с реальностью переменного тока и меняющихся энергетических путей, проектировщики обязательно принимают меры по контролю напряжения. Эксперты по энергетике отмечают, что даже 5-процентное изменение напряжения в данной системе может вызвать отключения электроэнергии и другие проблемы.

С этой целью многие элементы электрической системы, такие как трансформаторы, могут переключаться с подачи на поглощение реактивной мощности по фазам. Но люди, близкие к отрасли, подчеркивают, что это станет еще более важным, поскольку мы переключаем части американской электросети на возобновляемые источники энергии.

Реактивная мощность и возобновляемые источники энергии

Реактивная мощность также очень важна в контексте наших меняющихся энергосистем.

По многим важным причинам возобновляемые источники энергии, такие как солнце и ветер, заменяют традиционные источники энергии, такие как уголь и природный газ. Но это может иметь последствия для электросети в целом.

«Всплеск возобновляемых источников энергии в сеть без достаточной вращающейся массы может вызвать серьезные проблемы: отключение электроэнергии в определенных областях, чтобы привести спрос в соответствие с предложением; и большие электростанции отключаются от сети, чтобы предотвратить их перегрузку», — пишет Арчи Робб в Renewable Energy World, описывая принцип «инерции сети» и то, как это применимо к управлению реактивной мощностью в системе, которая переходит на возобновляемую энергию. строить.

Поскольку возобновляемые источники энергии по-разному поставляют энергию в сеть, будет возрастать потребность в микроуправлении активной и реактивной мощностью соответственно.

Рекламные объявления

Что такое активная, реактивная и полная мощность – определение и объяснение

Активная мощность

Определение: Мощность, которая фактически потребляется или используется в цепи переменного тока, называется Фактическая мощность или Активная мощность или Активная мощность . Измеряется в киловаттах (кВт) или МВт. Это фактические результаты электрической системы, которая управляет электрическими цепями или нагрузкой.

Реактивная мощность

Определение: Мощность, которая течет туда и обратно, что означает, что она движется в обоих направлениях в цепи или реагирует сама на себя, называется Реактивная мощность . Реактивная мощность измеряется в реактивных киловольт-амперах (кВАр) или МВАР.

Полная мощность

Определение: Произведение среднеквадратичного (RMS) значения напряжения и тока известно как Полная мощность . Эта мощность измеряется в кВА или МВА.

Было замечено, что мощность расходуется только на сопротивление. Чистая катушка индуктивности и чистый конденсатор не потребляют никакой мощности, поскольку за полупериод, какая бы мощность ни была получена от источника этими компонентами, такая же мощность возвращается к источнику. Эта мощность, которая возвращается и течет в обоих направлениях в цепи, называется реактивной мощностью. Эта реактивная мощность не совершает никакой полезной работы в цепи.

В чисто резистивной цепи ток совпадает по фазе с приложенным напряжением, тогда как в чисто индуктивной и емкостной цепи ток сдвинут по фазе на 90 градусов, т. е. если в цепь подключена индуктивная нагрузка, ток отстает от напряжения на 90 градусов, а при подключении емкостной нагрузки ток опережает напряжение на 90 градусов.

Следовательно, из всего вышеизложенного можно сделать вывод, что ток в фазе с напряжением производит истинную или активную мощность , тогда как ток , сдвинутый по фазе на 90 градусов по отношению к напряжению, вносит вклад в реактивную мощность в цепи.

Следовательно,

  • Истинная мощность = напряжение x ток в фазе с напряжением
  • Реактивная мощность = напряжение x ток не совпадают по фазе с напряжением

Векторная диаграмма для индуктивной цепи показана ниже:

Принимая за основу напряжение V, ток I отстает от напряжения V на угол ϕ. Ток I делится на две составляющие:

  • I Cos ϕ в фазе с напряжением В
  • I Sin ϕ, который на 90 градусов не совпадает по фазе с напряжением В

Таким образом, приведенное ниже выражение дает активную, реактивную и полную мощность соответственно.

  • Активная мощность P = V x I cosϕ = V I cosϕ
  • Реактивная мощность P r или Q = V x I sinϕ = V I sinϕ
  • Полная мощность P a или S = ​​V x I = VI

Активный компонент тока

Составляющая тока, которая находится в фазе с напряжением цепи и вносит вклад в активную или действительную мощность цепи, называется активной составляющей или полной ваттной составляющей или синфазной составляющей тока.