Двигатель с конденсатором: Конденсаторный двигатель

Конденсаторный двигатель

В ГОСТ 27471-87 [1] дано следующее определение:
Конденсаторный двигатель — двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор.

Конденсаторный двигатель, хотя и питается от однофазной сети, по существу является двухфазным.

Ёмкостной сдвиг фаз с рабочим конденсатором

Ёмкостной сдвиг фаз с пусковым и рабочим конденсатором

Конструктивно конденсаторный асинхронный двигатель представляет из себя двухфазный двигатель. На статоре располагают две обмотки фаз, оси которых смещены относительно друг друга на 90 электрических градусов. Обе обмотки занимают равное число пазов. Питание электродвигателя осуществляется от однофазной сети переменного тока, при этом одна обмотка подключается непосредственно к сети, а другая через конденсатор. Таким образом, в отличии от однофазного двигателя, который после пуска работает с пульсирующим магнитным потоком, конденсаторный электродвигатель работает с вращающимся магнитным потоком.

Емкость рабочего конденсатора, требуемая для получения кругового вращающегося поля, определяется по формуле [2]

,

  • где Сраб – емкость рабочего конденсатора, Ф,
  • IA — ток обмотки A, А,
  • IB — ток обмотки B, А,
  • — угол фазового сдвига между током IA и напряжением питания U при круговом вращающемся поле, градусов,
  • U — напряжение питания сети, В,
  • f — частота сети, Гц,
  • k — коэффициент, определяемый отношением эффективных чисел витков в обмотках фаз статора B и A.

,

  • где – число последовательно соединенных витков в обмотки фазы А и B статора,
  • kобА и kобВ — обмоточный коэффициент обмоток фаз статора А и B

Для повышения пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Cп. Для создания пускового момента, равного номинальному, требуется пусковой конденсатор Cп в 2 — 2,5 раза больше рабочего Cр.

Основные параметры электродвигателя

Общие параметры для всех электродвигателей

  • Момент электродвигателя
  • Мощность электродвигателя
  • Коэффициент полезного действия
  • Номинальная частота вращения
  • Момент инерции ротора
  • Номинальное напряжение
  • Электрическая постоянная времени

    Библиографический список

  • ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
  • Н.И.Волков, В.П.Миловзоров. Электромашинные устройства автоматики: Учеб. для вузов по спец. «Автоматика и телемеханика».- 2-е изд.- М.:Высш.шк., 1986.

Асинхронный двигатель с пусковым конденсатором

1. Применение асинхронных двигателей в стиральных машинах


Асинхронные двигатели нашли широкое применение как в промышленности,так и в быту. В целом следует отметить два самых распространённых вида асинхронных двигателей — это конденсаторные (иногда их называют двухфазные) и трёхфазные.

Конденсаторные двигатели, которые мы будем рассматривать, часто применялись в стиральных машинах 80х-90х гг. выпуска. В таких машинках количество оборотов барабана при отжиме достигало всего лишь лишь 400-600 оборотов в минуту, реже 800 или 1000, где уже применялась электронная схема управления. В 2000-x годах, было выпущено крайне мало стиральных машин с такими двигателями. С развитием электронных технологий, конденсаторные асинхронные двигатели канули в прошлое, поскольку на смену им пришли более компактные и динамичные универсальные коллекторные двигатели, а также трёхфазные двигатели с частотным регулированием скорости. Для осуществления привода барабана стиральных машин, производителям пришлось по ряду причин отказаться от применения конденсаторных асинхронных двигателей. Но это не означает, что асинхронные двигатели и вовсе исключили из конструкции стиральных машин. Например в стиральных машинах с функцией сушки горячим воздухом,простейшие односкоростные конденсаторные двигатели применяются до сих пор в качестве приводов вентиляторов, которые обдувают ТЭН сушки, прогоняя горячий воздух в бак стиральной машины.

2. Устройство асинхронного двигателя



1. Крышки двигателя

2. Подшипники

3. Ротор

4. Статор

5. Крыльчатка охлаждения

Рис.2 Устройство асинхронного двигателя

Асинхронный двигатель имеет в своём составе две основные детали: статор и ротор, разделённые воздушным зазором.

Статор (от латинского-стою) — неподвижная часть двигателя, взаимодействующая с подвижной частью-ротором.

Активными частями статора являются обмотки и магнитопровод (сердечник). Обмотка статора в общем случае представляет собой многофазную обмотку, проводники которой равномерно уложены по окружности в пазы сердечника. Асинхронные двигатели для стиральных машин имеют две скорости вращения. В режиме стирки частота вращения на роторе двигателя составляет около 300 об/мин, а в режиме отжима (центрифугирования) 2800 об/мин. Поэтому, такие двигатели называют двухскоростные и для каждого режима работы применяется своя обмотка. Статор в рассматриваемом двигателе является электромагнитом, который создаёт магнитное поле.


Ротор — подвижная часть двигателя (Рис.3) В асинхронных двигателях это короткозамкнутая обмотка, которую часто называют «беличьей клеткой» из-за схожести конструкции. Алюминиевые или медные стержни статора замкнуты накоротко с торцов кольцами и как правило заливаются сплавом алюминия.Сердечник (вал ротора) имеет зубчатую структуру, который жестко скреплён с «беличьей клеткой».

Вал ротора вращается на двух подшипниках, опорами которого являются крышки двигателя. Для лучшего охлаждения обмоток статора, на роторе устанавливаются крыльчатки с лопастями.

1. Сердечник из штампованных листов стали или залитый сплавом алюминия

2. Стальной вал с зубцами

3. Короткозамкнутая обмотка в виде «беличьей клетки»

Рис.3 Устройство ротора асинхронного двигателя

3. Принцип работы конденсаторного асинхронного двигателя


Для привода барабана в стиральных машинах всегда применялись двухскоростные конденсаторные асинхронные двигатели.
Конденсаторный двигатель — разновидность асинхронного двигателя, в обмотки которого включен конденсатор для создания сдвига фазы тока. Подключается в однофазную сеть посредством специальных схем. Работоспособная схема подключения такого двигателя содержит конденсатор (пусковой конденсатор), от чего и произошло название.

Давайте рассмотрим простейшую схему подключения конденсаторного двигателя на примере Рис.4



Одна из обмоток (её чаще называют рабочей) подключают напрямую к сети, а пусковую обмотку последовательно через конденсатор. Рабочая и пусковая обмотки геометрически сдвинуты друг относительно друга на определённый угол. Для работы асинхронных двигателей важно, чтобы частота вращения ротора не была равна частоте вращения магнитного поля, создаваемое током обмотки статора. Отсюда и название — асинхронный двигатель. Но однофазная обмотка на статоре не способна создавать вращающее круговое магнитное поле. Поэтому, для соблюдения условий работы асинхронного двигателя, необходимо, что бы и токи были сдвинуты по фазе. Конденсатор в цепи пусковой обмотки создаёт сдвиг фаз токов на электрический угол «фи»=90°. Магнитное поле статора воздействует на обмотку ротора и по закону электромагнитной индукции наводит в них ЭДС. В обмотке ротора под действием наводимой ЭДС возникает собственное магнитное поле и ток, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая складываясь по окружности, создает вращающий электромагнитный момент, заставляющий ротор вращаться. Относительная разность скоростей вращения ротора и магнитного потока, создаваемого обмотками статора называется скольжение асинхронного двигателя.

А — рабочая обмотка

В — пусковая обмотка

С — пусковой конденсатор


Простая схема подключения асинхронного двигателя через конденсатор
Рис.4


А теперь представьте, если бы в пусковой обмотке не было конденсатора. Тогда магнитное поле создаваемое статором, создавало бы такое же магнитное поле в роторе. При такой схеме подключения, двигатель можно представить лишь в качестве трансформатора и совпадающие по фазе токи не смогли бы создать вращающее круговое магнитное поле, а пусковой момент был бы настолько мал, что ротор оставался бы почти неподвижным.

4. Неисправности и диагностика. Пуск асинхронного двигателя стиральной машины


Характерный признак неисправности при работе конденсаторных асинхронных двигателей проявляется как правило в ослаблении вращающего момента, вследствие чего ротор двигателя, особенно под нагрузкой, не в силах совершить полный оборот. Из-за этого в стиральной машине, барабан с бельём совершает неполные покачивающие движения напоминающие колебание маятника. В подобных двигателях стиральных машин можно выделить несколько причин такой неисправности.

Самая распространённая причина — это потеря ёмкости пускового конденсатора, из-за чего сдвиг фаз токов пусковой и рабочей обмотки становится незначительным и не создаётся мощного вращающего момента ротора двигателя. Хотя при этом в режиме холостого хода (без нагрузки) двигатель может запускаться нормально. Подобная проблема не относится непосредственно к неисправности самого двигателя. В этом случае требуется только замена пускового конденсатора.

Другая причина — это межвитковое замыкание одной из обмоток двигателя. Причём поведение в работе двигателя иногда схоже с потерей ёмкости пускового конденсатора, но сопровождается сильным нагревом статорной обмотки, завышенным потребляемым током, иногда появляется запах гари и характерный гудящий звук. Иногда, при межвитковом замыкании в цепи обмоток режима отжима, обмотки режима стирки могут быть абсолютно исправны и работать нормально, и наоборот. В этом случае двигатель подлежит замене. Если нет возможности его заменить, то можно обратиться на предприятие где профессионально занимаются ремонтом электродвигателей.

Иногда при неисправности в двигателе одна или несколько обмоток могут быть в полном обрыве.

В остальных случаях проблем работы двигателей, можно выделить неисправности связанные с коммутирующими устройствами и модулями управления, но это мы не будем рассматривать в данном материале.

Для того, чтобы отличить неисправность непосредственно двигателя от неисправности коммутирующих его устройств, необходимо произвести измерения электрического сопротивления обмоток, в частности электрического пробоя обмоток на корпус статора, подключить двигатель напрямую измерив потребляемый рабочий ток. Данные о потребляемом токе указаны на шильдике двигателя, а электрические сопротивления и схема соединения обмоток указываются в сервисной инструкции для мастеров.

Ниже, на Рис.5 и Рис. 6 приведена схема проверки двухскоростного асинхронного электродвигателя стиральной машины. Мы взяли самую сложную встречающуюся схему колодки двигателя с применением тахогенератора и термозащиты. Тахогенератор (Т) и термозащита (ТН) при проверке двигателя напрямую не подключаются к схеме. Для того,чтобы измерить ток в обмотках амперметр (A) подключается последовательно в разрыв цепи, но можно использовать и токовые клещи. Завышенный рабочий ток может свидетельствовать о межвитковом замыкании обмоток статора. Пусковой конденсатор (С), может быть общим для пусковых обмоток отжима и стирки. Но иногда используются и схемы с двумя пусковыми конденсаторами. Изменение направления вращения двигателя для режима стирки происходит путём изменения подключения полюсов обмоток. В режиме отжима двигатель вращается всегда в одну сторону.




Рис.5 Схема подключения для

проверки обмотки отжима



Рис. 6 Схема подключения для

проверки обмотки стирки

5. Режимы работы и коммутация обмоток асинхронного двигателя в стиральных машинах


Как мы и говорили, в стиральных машинах всегда применяются две скорости вращения двигателя. В режиме стирки, двигатель вращается медленно, а в режиме отжима (центрифугирования) с большой скоростью. Коммутация обмоток асинхронного двигателя в стиральных машинах традиционно осуществляется при помощи электромеханического командного аппарата. В режиме стирки, двигатель вращается через определённую паузу с поочерёдным изменение направлением вращения. Это делается для того, что бы белье в барабане не перекручивалось. В режиме отжима двигатель вращается в постоянном направлении.

Как видно на представленных ниже фрагментах схемы ,контакты командоаппарата имеют несколько положений. Вывод двигателя номер 5 является общим для обеих обмоток и включается напрямую с общей шиной питания, а другие выводы двигателя запитаны через соответствующие контакты командоаппарата, тем самым создавая электрическую цепь. В этой схеме применяется один пусковой конденсатор, но в некоторых бывает и два конденсатора. Иногда, коммутация обмоток и управление двигателем (например в стиральных машинах Ardo TL80) осуществляется посредством электронного модуля с расположенными на нём симистором управления двигателем и контрольной цепью тахогенератора.





  • Двигатель не вращается

  • Режим отжима (центрифугирования)




  • Двигатель вращается по направлению часовой стрелки





  • Двигатель вращается против направления часовой стрелки

6. Преимущества и недостатки однофазных асинхронных двигателей

К преимуществам можно отнести: простоту конструкции, относительно высокий ресурс двигателя, низкий уровень шума по сравнению с коллекторными двигателями (речь о которых идёт в другой главе), практически не требует профилактического обслуживания, максимум требуется смазывание, либо замена подшипников.
К недостаткам можно отнести: большие габариты и массу двигателя, большой пусковой ток, применение нескольких обмоток для каждого режима работы двигателя, низкий КПД (коэффициент полезного действия), при неизменном габарите невозможно увеличить мощность двигателя, этим и объясняется его применение в стиральных машинах с низким числом оборотов барабана при отжиме, плохая управляемость электронными схемами.

7. Частые вопросы

  • Для чего нужен конденсатор в цепи пусковой обмотки электродвигателя?


Конденсатор в асинхронных двигателях используется для сдвига фаз токов пусковой и рабочей обмотки, в результате чего возникает вращающееся магнитное поле. Сдвиг фаз обязательное условие для работы конденсаторных асинхронных однофазных двигателей.

  • Какая ёмкость пускового конденсатора применяется для пуска асинхронных двигателей стиральных машин?

Для каждого типа двигателей индивидуально подбирается значение ёмкости конденсатора. Самые распространённые номиналы ёмкостей (ёмкость конденсатора измеряется в микрофарадах): 8,5 мкф, 11,5 мкф, 12,5 мкф, 14 мкф,16 мкф, 18 мкф, 20 мкф, 22 мкф и 25 мкф. Но самые распространённые 14 мкф и 16 мкф.

  • Почему рабочее напряжение пускового (фазосдвигающего) конденсатора должно быть не менее 400 вольт?

Фазосдвигающий конденсатор устанавливается в цепи обмоток статора, которые обладают большой индуктивностью. При работе электродвигателя, особенно при его пуске и остановке, на обмотках высвобождается большая электродвижущая сила самоиндукции (ЭДС самоиндукции), в виде всплесков повышенного напряжения 300-600 вольт, приложенная именно к конденсатору. Если установить конденсатор с меньшим допустимым рабочим напряжением, то он выйдет из строя.

  • Что произойдёт, если вместо конденсатора номинальной ёмкости предназначенного для оптимальной работы двигателя установить конденсатор большей или меньшей ёмкости?

Если величина ёмкости фазосдвигающего конденсатора выбрана больше, чем требуется при данных конкретных условиях работы электродвигателя, то двигатель будет быстро перегреваться. Если величина ёмкости выбрана меньше требуемой, то вращающий пусковой момент ослабнет, что может вызвать затруднённое вращение барабана с бельём в стиральной машине.

В электрической цепи с ёмкостным сопротивлением (конденсатором) ток опережает напряжение на угол «фи»=90°. Ток опережающий напряжение по фазе на 90°, называется реактивным или безваттным током, так как он не вызывает в цепи потребления мощности.

С включением последовательно пусковой обмотки и конденсатора, нарушается чисто ёмкостный (реактивный) характер цепи, в результате чего уменьшается угол сдвига фаз. Поэтому для каждого асинхронного однофазного двигателя ёмкость конденсатора пусковой обмотки подбирается таким образом,чтобы угол сдвига фаз тока относительно рабочей был близок к 90°.

Что делает конденсатор?

Для двигателя переменного тока с постоянным конденсатором (также известного как двигатель переменного тока с конденсаторным пуском и работой) для правильной работы требуется конденсатор. Наслаждайтесь чашечкой кофе, и мы объясним, почему.

Простой эксперимент…

Чтобы показать, насколько важен конденсатор, мы можем начать с простого эксперимента. Используйте однофазный двигатель переменного тока с разделенным конденсатором и подключите его провода непосредственно к однофазному источнику питания (конденсатор пропустить). Двигатель, скорее всего, не будет работать с нагрузкой, если вал не вращается внешней силой (это намного проще с двигателем с круглым валом без редуктора). Это потому, что нам нужно как минимум две фазы для создания вращающегося магнитного поля в статоре. Здесь на помощь приходит конденсатор.

 

Что делает конденсатор?

Первоначально именуемый «конденсатором», конденсатор представляет собой пассивный электронный компонент, содержащий не менее двух проводников (пластин), разделенных изолятором (диэлектриком). Проводниками могут быть тонкие пленки металла, алюминиевой фольги или диски. Изолятором может быть стекло, керамика, пластиковая пленка, воздух или бумага. При подключении к источнику напряжения конденсатор накапливает электрический заряд в виде электростатического поля между его проводниками.
По сравнению с батареей, батарея использует химические вещества для хранения электрического заряда и медленно разряжает его по цепи. Это может занять годы. Конденсатор высвобождает свою энергию гораздо быстрее — за секунды или меньше. Типичным примером применения является вспышка вашей камеры.

ВНИМАНИЕ: Поскольку конденсатор содержит электрический заряд, никогда не прикасайтесь к выводам конденсатора. Если по какой-то причине это необходимо, убедитесь, что электрический заряд полностью разряжен.

 

Каково назначение конденсатора для двигателей?

Конденсатор предназначен для создания многофазного источника питания из однофазного источника питания. При многофазном питании двигатель может:

1. Установить направление вращения.
2. Обеспечьте пусковой крутящий момент для двигателя и увеличьте крутящий момент во время работы.

Все двигатели переменного тока компании Oriental Motor представляют собой двигатели с постоянно разделенными конденсаторами (конденсаторный пуск и работа). Эти двигатели содержат основную обмотку и вторичную вспомогательную обмотку. Конденсатор включен последовательно с вспомогательной обмоткой, что приводит к тому, что ток во вспомогательной обмотке отстает по фазе от тока в основной обмотке на 90 электрических градусов (четверть всего цикла). Теперь мы создали многофазный источник питания из однофазного источника питания.

Без конденсатора С конденсатором

 

Какой тип конденсатора использует Oriental Motor?

Компания Oriental Motor использует конденсаторы с осаждением из паровой фазы, признанные UL. Конденсатор этого типа использует в качестве элемента металлизированную бумагу или пластиковую пленку. Этот конденсатор также известен как «самовосстанавливающийся (SH) конденсатор». Хотя в большинстве предыдущих конденсаторов использовались бумажные элементы, конденсаторы из пластиковой пленки в последние годы стали популярными благодаря своей компактной конструкции.

Номинальное время проводимости

Номинальное время проводимости — это минимальный расчетный срок службы конденсатора при работе при номинальной нагрузке, номинальном напряжении, номинальной температуре и номинальной частоте. Стандартный срок службы составляет 40 000 часов. Конденсатор, который выходит из строя в конце срока службы, может задымиться или воспламениться. Мы рекомендуем заменять конденсатор по истечении номинального времени проводимости, чтобы избежать потенциальных проблем.

 

Элемент безопасности конденсатора

Некоторые конденсаторы оснащены функцией безопасности, которая позволяет безопасно и полностью удалить конденсатор из цепей, чтобы предотвратить дым и/или возгорание в случае пробоя диэлектрика. В продукции Oriental Motor используются конденсаторы с признанными UL функциями безопасности, которые прошли испытание UL 810 на ток короткого замыкания 10 000 А.

 

Как оцениваются конденсаторы и почему это важно?

Конденсаторы оцениваются по емкости, рабочему напряжению, допуску, току утечки, рабочей температуре, эквивалентному последовательному сопротивлению и т. д. Двумя наиболее важными характеристиками для подбора двигателя являются емкость и рабочее напряжение. Номинальное напряжение обычно примерно вдвое превышает значение номинального входного напряжения двигателя в вольтах (на самом деле существует формула для определения емкости двигателя, но мы сохраним ее на потом). Для наших компактных двигателей переменного тока единицей измерения емкости является «микрофарад» или мкФ. Эти характеристики указаны как на этикетке двигателя, так и на этикетке конденсатора.

 

Этикетка двигателя с рекомендуемым конденсатором Этикетка конденсатора 

 

Использование конденсатора с другой емкостью может увеличить вибрацию двигателя, выделение тепла, энергопотребление, колебания крутящего момента и нестабильную работу. Если емкость слишком высока, крутящий момент двигателя увеличится, но может произойти перегрев и чрезмерная вибрация. Если емкость слишком мала, крутящий момент упадет. Использование конденсатора с напряжением, превышающим номинальное, может привести к повреждению, а конденсатор может задымиться или воспламениться.

 

Нужно ли правильно подобрать конденсатор для двигателей переменного тока Oriental Motor?

Нет. Каждый однофазный двигатель переменного тока от Oriental Motor оснащен специальным конденсатором, размер которого позволяет двигателю работать с максимальной эффективностью и производительностью. Размер конденсатора не требуется.

 

Что произойдет, если использовать другой конденсатор?

Чтобы двигатель работал с максимальной эффективностью, всегда используйте специальный конденсатор, входящий в комплект поставки двигателя. Специальный конденсатор создает 90 электрический фазовый сдвиг от вспомогательной (конденсаторной) фазы к основной фазе. Использование неподходящего конденсатора может сдвинуть это значение с 90 градусов, что в результате приведет к перегреву двигателя с непостоянством крутящего момента или скорости.

 

 

Размер выделенного конденсатора рассчитан на то, чтобы двигатель создавал идеальную кривую крутящий момент/скорость. Обратите внимание на «Номинальная скорость» и «Номинальный крутящий момент». В этой рабочей точке (где эти две точки пересекаются на кривой) достигается наибольшая эффективность. Каждый двигатель рассчитан на номинальную нагрузку. Вот почему увеличение размеров двигателей переменного тока — не лучший способ определения их размеров.

 

 

Разница в емкости конденсатора повлияет как на номинальную скорость, так и на номинальный крутящий момент, поскольку рабочая точка смещается от максимальной эффективности. Если вы используете 2 одинаковых двигателя с совершенно разными конденсаторами, вы получите совершенно разные результаты.

При потере максимальной эффективности тепловыделение двигателя увеличивается. Чрезмерное тепло может ухудшить смазку подшипников и сократить срок службы двигателя. Тем не менее, полезно знать, что если температура обмотки достигает 130 ° F, схема тепловой защиты внутри двигателя сработает и отключит двигатель, пока он не остынет.

 

Как подключить конденсатор?

Для трехпроводного двигателя переменного тока подсоедините красный и белый провода к противоположным клеммам конденсатора. Подсоедините черный провод к N (нейтральной) стороне источника питания. Для однонаправленной работы просто подключите сторону L (под напряжением) источника питания к клеммной колодке либо к красному подводящему проводу (по часовой стрелке), либо к белому подводящему проводу (против часовой стрелки), чтобы начать вращение. СОВЕТ: 2 ближайшие клеммы соединены внутри. Для двунаправленной работы используйте однополюсный двухпозиционный переключатель (SPDT) между проводом под напряжением и клеммами конденсатора для переключения направления.

Однако для переключения направления асинхронного двигателя необходимо дождаться полной остановки двигателя. Для реверсивных двигателей направление может быть изменено мгновенно.

 

 

Теперь, когда вы знаете важность конденсаторов, не теряйте их. Если вы это сделаете, используйте этикетку двигателя, чтобы определить правильный конденсатор для использования. Следите за советами по устранению неполадок.

 

 

Связанные ресурсы:

 

Пусковые конденсаторы двигателя — Grainger Industrial Supply

Пусковые конденсаторы двигателя

134 изделия сила) во время запуск двигателя. Они выходят из цепи, когда двигатель достигает своей рабочей скорости, в отличие от рабочих конденсаторов, которые помогают поддерживать рабочие характеристики двигателя. Конденсаторы двигателя в первую очередь отличаются своей емкостью, которая измеряется в микрофарадах (мкФ или мкФ). При замене пускового конденсатора важно, чтобы номинал, напряжение и размеры в микрофарадах соответствовали оригинальному конденсатору. Пусковые конденсаторы работают с конструкциями двигателей, обозначенными как конденсаторный пуск или конденсаторный пуск/работа, и они обычно используются с двигателями, питающими вентиляторы, воздуходувки и насосы.

  • Пусковые конденсаторы двигателя

  • Пусковые конденсаторы двигателя с резисторами

  • Универсальные пусковые конденсаторы двигателя

902 49 Пусковые конденсаторы двигателя

от 110 до 125 В переменного тока

Пусковые конденсаторы двигателя от 110 до 125 В переменного тока , отсортировано по рейтингу в микрофарадах, пользовательский

Загрузка. ..

9000 2

165 В перем. тока

Пусковые конденсаторы двигателя 165 В перем. 20

Загрузка…

220–250 В перем. тока

Пуск двигателя Конденсаторы от 220 до 250 В переменного тока, отсортированные по номиналу в микрофарадах, заказные

90 026

Загрузка…

330 В переменного тока

Пусковые конденсаторы двигателя 330 В переменного тока, отсортированные по номиналу в микрофарадах, на заказ

Загрузка. ..

Пусковые конденсаторы с резисторами

165 В перем. тока

Моторные конденсаторы с резисторами 165 В переменного тока, отсортированный по номинальной микрофараде, Custom

Загрузка …

0022

от 220 до 250 В перем. тока

Пусковые конденсаторы с резисторами от 220 до 250 В перем. 0260

Загрузка.