• Войти
  • Регистрация
 

10 технологий, которые защищают здания от землетрясений. Сейсмоустойчивый фундамент


10 технологий, которые защищают здания от землетрясений

Землетрясение – мощная разрушительная стихия, которая способна уничтожать целые города. К счастью, за последние несколько десятилетий архитекторы и инженеры разработали несколько технологий, которые гарантируют, что здания, будь то небольшие дома или небоскребы, не разрушатся, если случится землетрясение.

1. «Парящий» фундамент

10 технологий, которые защищают здания от землетрясений

Изоляция фундамента, как следует из названия, заключается в том, чтобы отделить фундамент здания от всей постройки выше фундамента. Одна из систем, работающих по такому принципу, позволяет зданию «плавать» над фундаментом на свинцово-резиновых подшипниках, в которых свинцовое ядро окружено чередующимися слоями резины и стали. Стальные пластины крепят подшипники к зданию и фундаменту и это позволяет во время землетрясения двигаться фундаменту, но не двигаться конструкции над ним.

Сегодня японские инженеры вывели эту технологию на новый уровень. Их система позволяет зданию парить на воздушной подушке. Вот как это работает. Сенсоры на здании распознают сигналы сейсмической активности. Сеть сенсоров передает сигнал воздушному компрессору, который за полсекунды нагнетает воздух между зданием и фундаментом. Подушка поднимает здание на 3 см над землей, изолируя его от толчков, которые могут его разрушить. Когда землетрясение прекращается, компрессор выключается и здание опускается на место.

2. Амортизаторы ударов

10 технологий, которые защищают здания от землетрясений

Эта технология взята из авто-индустрии. Амортизаторы уменьшают магнитуду вибраций, превращая кинетическую энергию колебаний в тепловую энергию, которая может быть рассеяна через тормозную жидкость. В строительстве инженеры устанавливают на каждом уровне здания подобные гасители колебаний, один конец которых крепится к колонне, другой к балке. Каждый гаситель состоит из поршневой головки, которая движется в цилиндре, наполненном силиконовым маслом. Во время землетрясения горизонтальное движение здания заставляет двигаться поршни, оказывая давление на масло, что преобразует механическую энергию землетрясения в тепло.

3. Маятниковая сила

10 технологий, которые защищают здания от землетрясенийАмортизация может быть разных видов. Другое решение, особенно для небоскребов, предполагает подвешивание огромной массы у вершины здания. Стальные тросы поддерживают массу, в то время как тягучие жидкие амортизаторы располагаются между массой и защищаемым зданием. Когда во время землетрясения здание раскачивается, маятниковая сила заставляет его двигаться в обратном направлении, рассеивая энергию.

Каждый такой маятник настроен точно в соответствии с естественной частотой вибрации здания, чтобы избежать эффекта резонанса. Такая система используется в небоскребе «Тайбэй 101» высотой 508 м – в центре маятника 660-тонный шар золотого цвета, подвешенный на 8 стальных тросах.

4. Заменяемые предохранители

10 технологий, которые защищают здания от землетрясений

Знаете, как работают электрические «пробки»? Инженеры пытаются внедрить подобные предохранители и в сейсмическую защиту зданий.

Электрические предохранители «вылетают», если нагрузка на сеть превышает определенные значения. Электричество отключается, и это предотвращает перегрев и пожары. Исследователи из Университета Стэнфорда и Университета Иллинойса провели исследования конструкции из стальных рам, которые являются эластичными и могут колебаться на вершине фундамента.

Но это еще не все. В дополнение исследователи предложили вертикальные кабели, которые соединяют верхушку каждой рамы с фундаментом, тем самым ограничивая колебания. А когда колебания заканчиваются, кабели могут вытянуть всю конструкцию вверх. Наконец, между рамами и у оснований колонн находятся заменяемые предохранители. Металлические зубцы предохранителей поглощают сейсмическую энергию. Если нагрузка превысит допустимую, предохранители можно легко и недорого заменить, быстро восстановив здание в его первозданном виде.

5. Колеблющееся «ядро»

10 технологий, которые защищают здания от землетрясений

Во многих современных небоскребах инженеры используют систему колеблющейся стены центрального ствола здания. Усиленный бетон проходит через центр конструкции, окружая лифтовые холлы. Однако эта технология несовершенна, и такие здания во время землетрясений могут подвергаться значительным неэластичным деформациям. Решением может стать комбинирование этой технологии с упомянутой выше изоляцией фундамента.

Стена центрального ствола здания колеблется на нижнем уровне здания, чтобы предотвратить разрушения бетона стены. Кроме того, инженеры укрепляют два нижних этажа здания сталью и устанавливают натяжную арматуру по всей высоте. В железобетонных конструкциях с натяжением арматуры на бетон стальные тросы проходят через центральный ствол здания. Они работают как резиновые ленты, которые могут быть растянуты гидродомкратами, чтобы усилить временное сопротивление разрыву центрального ствола.

6. Плащ-невидимка от землетрясений

10 технологий, которые защищают здания от землетрясений

Землетрясения создают волны, которые подразделяются на объемные и поверхностные. Первые быстро проходят в глубину Земли. Вторые двигаются более медленно через земную кору и включают подвид волн, известный как волны Рэлея, которые двигают землю в вертикальном направлении. Именно эти колебания и создают основные разрушения при землетрясениях.

Некоторые ученые полагают, что можно прервать передачу этих волн, создав «плащ-невидимку» из 100 концентрических пластиковых колец, скрытых под фундаментом здания. Такие кольца могут улавливать волны, и колебания уже не могут распространяться на здание над ними, а просто выходят с другого конца конструкции из колец. Однако не до конца изучено, что будет в таком случае со стоящими поблизости зданиями, лишенными такой защиты.

7. Сплавы с эффектом памяти формы

10 технологий, которые защищают здания от землетрясений

Пластичность материалов представляет главную задачу для инженеров, пытающихся создать сейсмоустойчивые здания. Пластичность описывает изменения, которые происходят в материале, когда к нему прикладывают силу. Если эта сила достаточно велика, форма материала может быть изменена навсегда, что повлияет на его способность правильно функционировать.

Сплавы с эффектом памяти формы, в отличие от традиционных стали и бетона, могут испытывать значительные нагрузки и все равно возвращаться к прежней форме. Эксперименты с этими сплавами уже проводятся. Один из них – никель-титан, или нитинол, который эластичнее стали на 10-30%.

8. Углеволоконная оболочка
10 технологий, которые защищают здания от землетрясений
Строить новые здания с сейсмозащитой очень важно, но не менее важно защищать от землетрясений здания уже построенные. Изоляция фундамента здесь также может помочь, но есть более простое решение, так называемая усиленная углеродным волокном пластиковая оболочка (fiber-reinforced plastic wrap, FRP). Инженеры просто оборачивают пластиковый материал вокруг опорных бетонных колонн и закачивают под давлением эпоксидную смолу между колонной и материалом. Этот процесс может быть повторен 6-8 раз. Таким способом можно укрепить даже здания, которые уже были повреждены землетрясениями. Согласно исследованиям, устойчивость конструкций при применении такого метода возрастает на 24-38%.
9. Биоматериалы

10 технологий, которые защищают здания от землетрясений

Материалы, подобные FRP и сплавам с эффектом памяти, в будущем могут стать еще более совершенными – и вдохновение для новых материалов может прийти из мира животных. Например, скромная мидия, чтобы оставаться на своем месте, выделяет липкие волокна – биссусные нити. Некоторые из них жесткие, а другие – эластичные. Когда волна ударяет в мидию, она остается на своем месте, т.к. эластичные нити поглощают волну. Исследователи подсчитали, что соотношение жестких и эластичных волокон – 80:20. Дело за малым – разработать подобный материал для применения в строительстве.

Другая идея связана с пауками. Известно, что их паутина прочнее стали, однако ученые считает, что уникальным этот материал делает динамическая реакция при значительном натяжении. Ученые обнаружили, что при растяжении отдельных нитей паутины они сначала не растягиваются, потом растягиваются, а потом опять становятся нерастягивающимися.

10. Картонные трубы

10 технологий, которые защищают здания от землетрясений

Для стран, которые не могут позволить себе дорогие сейсмозащитные технологии, у инженеров также есть разработки. Например, в Перу исследователи сделали традиционные постройки из необожженного кирпича прочнее, укрепив их пластиковой сеткой. В Индии успешно используют бамбук для усиления бетона. В Индонезии некоторые здания стоят на опорах из старых покрышек, наполненных песком или камнями.

Даже картон может стать крепким, долговечным строительным материалом. Японский архитектор Shigeru Ban построил несколько зданий, используя картонные трубы, покрытые полиуретаном. В 2013 г. он построил собор в Новой Зеландии. Для постройки понадобилось 98 картонных труб, усиленных деревянными балками. Конструкции из картона и дерева очень легкие и гнущиеся, они лучше выдерживают сейсмические нагрузки, чем бетон. А если они все-таки разрушатся, вероятность, что под обломками пострадают люди, минимальна.

По материалам: HowStuffWorks

Текст: Валентина Лебедева

mirum.ru

Сейсмоустойчивость: почему они качаются и не разваливаются?

Раз уж у меня начался словестный понос с утра, то напишу еще об одной штуке. Я несколько раз была в небольшом музее в Наре, где можно посмотреть историю строительства сейсмоустойчивых зданий. В прошлом году я там сделала это фото, и все никак не знала, что с ним делать - не находилось повода что-то об этом сказать.

Если говорить о технологии строительства сейсмоустойчивых зданий, то там наверняка все очень сложно, и можно написать целую диссертацию на эту тему обо всех ньюансах. Вероятнее всего японцы отказались от некоторых отделочных материалов и конструкций, которые не соответсвуют нормам безопасности. Но когда рассказывают об особенностях строительства таких зданий в Японии, чаще всего говорят именно о таких опорах, на которых стоит каждый современный дом.

Опоры представляют собой многослойные конструкции. Я уже точно не помню никаких подробностей про сплавы, но резина точно делается из смеси природной резины и какой-то специальной с повышенной гибкостью. Слои резины чередуются со слоями металла. И во время землятресения такая конструкция помогает рассеивать толчки за счет того, что "ходуном ходят" именно эти опоры со слоями резины и металла, принимая на себя все колебания.

В музее принцип работы показывали на примере стакана, наполненного водой. Под ним стояла такая опора, которую мотало туда-сюда, а стакан оставался неподвижным, и вода не расплескивалась.

В итоге обещают, что здание останется в целости и сохранности, а все вещи на своих местах. Судя по многим картинкам колебания гасятся настолько, что здание даже не двигается. Но на самом деле это не совсем так. Даже при среднем землятресении чувствуются колебания и качка. И чем выше этаж, тем сильнее качает по идее. Поэтому некоторым людям, чувствительным к укачиванию, может стать нехорошо.

Тут еще имеет большое значение, с какого типа толчками приходится сталкиваться. Такая схема хорошо помогает гасить поперечные волны, а вот с продольными такой эффективности нет. Поэтому можно одновременно чувствовать и толчки снизу, и качку.

Мне всегда было интересно, какие изменения вносятся в саму конструкцию здания, что каркас вообще выдерживает колебания. Что-то мне подсказывает, что кирпичные здания здесь точно не прижились бы. Есть отделка "под кирпич", но это всего лишь фасад, и она не имеет отношения к функциональной кладке.

Может быть кто-нибудь из строителей-архитекторов сможет рассказать какие-то интересные подробности и строительстве сейсмоустойчивых зданий.

Я нашла схематичные картинки, показывающие, как устроен фундамент. 

Макет опоры в музее был буквально сантиметров 30 в диаметре, но в оригинале он достигает как минимум полутора метров. В том же музее была открыта часть фундамента, чтобы можно было заглянуть и посмотреть, как такие опоры выглядят в жизни.

Фото сделано во время тестов. Если представить реальные масштабы, дыхание останавливается.

 

 

Уже более 20 лет назад вышел закон о том, что все новые здания должны строиться с применением новых технологий. Больше всего не везет частным старым двухэтажным домам, построенным еще в дореволюционные времена, - при очень сильных землетрясениях они разваливаются в мгновение ока. Поэтому самые серьезные разрушения зданий бывают именно в частном секторе и в деревнях, а не в центре мегаполисов, где сорокоэтажный многоквартирный дом покачался и успокоился.

sonata.livejournal.com

Сейсмоустойчивый фундамент — Department of Theoretical and Applied Mechanics

Пальчиковская Наталия, Катрыш Валерий

Актуальность проекта[править]

Землетрясение- это движение тектонических плит, вызывающих колебания земной поверхности. С точки зрения механики- это возмущающая сила по отношению к различным сооружениям, которая способна разрушать конструкции, приводить к многочисленным жертвам.

Некоторые данные из статистики[править]

За 30 лет конца XX века в сейсмокатастрофах погибло порядка 1 млн. человек. Это примерно 33 тыс. в год. За последние 10 лет статистика землетрясений показывает увеличение среднегодовой цифры до 45 тыс. жертв. Самые сейсмоопасные районы России: Сахалин, Курилы, Кавказ. Возможны землетрясения в 8-12 баллов.

Создать такой фундамент, который предотвращал бы действие возмущающей силы со стороны поверхности земли на конструкцию здания, что ликвидировало бы -раскачку здания -разрушение здания

Чертеж полученной конструкции[править]

MRGxQfMQaOY.jpg

Пусть землетрясение смещает сваю на 60 см (максимум при землетрясении в 7-8 баллов). Вместо того, чтобы этому смещению подвергался весь дом, происходит поворот данной системы рычагов, в результате чего возможно лишь вертикальное смещение дома на 16 см. Также чем больше отклоняется данная система, тем больше на нее будет действовать вес дома, возвращающий систему в исходное положение. Следует грамотно подбирать геометрические параметры системы, а именно важен выбор длины рычага: с одной стороны, он должен быть достаточно длинным, чтобы не было сильного поднятия здания, с другой стороны, при слишком большой длине потеряется прочность и устойчивость конструкции.

Seismmaket.jpeg

tm.spbstu.ru

Фундамент сейсмостойкого здания, сооружения

 

Изобретение относится к области фундаментостроения, в частности конструкциям фундаментов зданий, сооружений, возводимых в условиях сейсмических воздействий. Фундамент сейсмического здания, сооружения включает верхнюю и нижнюю опорные части, в которых образованы стаканы с вогнутыми днищами, и размещенный между ними промежуточный элемент в виде шара, при этом промежуточный элемент размещен с зазором относительно днища стакана верхней опорной части. Новым является то, что в углах, на пересечениях стен здания, сооружения в верхних и нижних опорных частях установлены стаканы с вогнутыми днищами в виде сферы более одного, с размещенными между ними промежуточными элементами в виде шаров, при этом внутренняя полость между днищами стаканов имеет форму эллипса, а верхние опорные части связаны между собой железобетонным поясом, на который опирается надземная часть здания, сооружения. Технический результат изобретения состоит в увеличении надежности, долговечности и прочности здания, сооружения в условиях действия сейсмических толчков. 3 ил.

Изобретение относится к области фундаментостроения, в частности к конструкциям фундаментов зданий, сооружений, возводимых в условиях сейсмических воздействий.

Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является фундамент сейсмического здания, сооружения, включающий верхнюю и нижнюю опорные части, в которых образованы стаканы с вогнутыми днищами, и размещенный между ними промежуточный элемент в виде шара, при этом верхняя и нижняя опорые части снабжены выступами, размещенными по их периметру на образованных одна к другой сторонах. Выступы верхней опорной части примыкают к выступам нижней опорной части, а промежуточный элемент размещен с зазором относительно днища стакана верхней опорной части (см. авт. свид. СССР 617532, кл. Е 02 D 27/34, 1978 г.), принято за прототип. К причинам, препятствующим достижению указанного ниже технологического результата при использовании известного устройства, принятого за прототип, относится то, что в известном устройстве представлена ненадежная и недолговечная конструкция сейсмостойкого фундамента здания, сооружения. В прототипе внутренняя полость между днищами стаканов 7 и 8 имеет форму вытянутого шестиугольника. При сейсмических толчках промежуточный элемент 4 в виде шара подвержен ударной нагрузке при движении слева направо (см. фиг.2 прототипа), ударяясь в днище 8. Это приводит к разрушению шара и днища, потере надежности и долговечности сооружения. Кроме того, в прототипе нет элементов, жестко (монолитно) связывающих верхние опорные части 3, что приводит также к потере надежности здания, сооружения. Следующий недостаток прототипа - невозможность передать на нижние опорные части 2 через промежуточный элемент 4 в виде шара больших нагрузок от надземных частей здания, сооружения. Большие нагрузки приводят к разрушению шара, потере надежности и долговечности здания, сооружения. Задача, на решение которой направлено заявленное изобретение, состоит в том, что необходимо создать такой фундамент сейсмостойкого здания, сооружения, который не терял прочности, надежности и долговечности в условиях действия сейсмических нагрузок, толчков. Технический результат - увеличение надежности, долговечности и прочности здания, сооружения в условиях действия сейсмических толчков. Указанный технический результат при осуществлении изобретения достигается тем, что в известном устройстве, включающем верхнюю и нижнюю опорные части, в которых образованы стаканы с вогнутыми днищами, и размещенный между ними промежуточный элемент в виде шара, при этом верхняя и нижняя опорные части снабжены выступами, размещенными по их периметру на образованных одна к другой сторонах. Выступы верхней опорной части примыкают к выступам нижней опорной части, а промежуточный элемент размешен с зазором относительно днища стакана верхней опорной части. Особенность заключается в том, что в углах здания, сооружения в верхних и нижних опорных частях установлены стаканы с вогнутыми днищами в виде сферы более одного с размещенными между ними промежуточными элементами в виде шаров, при этом внутренняя полость между днищами стаканов имеет форму эллипса, а верхние опорные части связаны между собой железобетонным поясом, на который опирается надземная часть здания, сооружения. На фиг. 1 изображен фрагмент фундамента, разрез; на фиг.2 - сечение А-А на фиг. 1; на фиг. 3 - положение фундамента в момент воздействия горизонтальных возмущающих сил. Сведения, подтверждающие возможности осуществления изобретения с получением вышеуказанного технического результата, заключаются в следующем. Фундамент сейсмического здания, сооружения состоит из установленной на бетонной конструкции 1 нижних опорных частей 2, верхних опорных частей 3 и промежуточных элементов 4 в виде шаров. На пересечении стен, в углах здания, сооружения в нижних опорных частях 2 и верхних опорных частях 3 установлены стаканы более одного с вогнутыми днищами в виде сферы. Нижние опорные части 2 и верхние опорные части 3 снабжены соответственно выступами 5 и 6, размещенными по их периметру на обращенных одна к другой сторонах, причем выступы 5 примыкают к выступам 6. В нижних опорных частях 2 и верхних опорных частях 3 образованы соответственно стаканы 7 и 8 с вогнутыми днищами, выполненными в виде сферы, а промежуточные элементы 4 размещены с зазором 9 относительно днища стаканов 7 верхних частей 3. Внутренняя полость между днищами стаканов 7 и 8 имеет форму эллипса, а зазор 9 равен 0,2-1,5 мм. Верхние опорные части 3 монолитно связаны железобетонным поясом 10, на который опирается надземная часть здания, сооружения. При сейсмическом воздействии или при других возмущающих воздействиях, например горизонтальных силах, верхние опорные части 3 совместно с железобетонным поясом 10 и установленной на нем надземной частью здания, сооружения перекатываются по шарам 4. Величина относительного смещения верхних и нижних частей ограничивается выступами 5 и 6. При прекращении воздействий, например, горизонтальной силы верхние опорные части 3, монолитно связанные железобетонным поясом 10, на котором установлена надземная часть здания, сооружения, возвращаются в первоначальное положение. Верхние 3 и нижние 2 опорные части по плоскости сферы покрыты составом, или пленками, или пластиком, уменьшающими трение между подвижными частями - шарами 4, верхними 3 и нижними 2 опорными частями. Количество опорных частей выбирают из расчета веса здания, сооружения с учетом несущей способности подвижных элементов. Надежность и долговечность конструкции возрастает по сравнению с прототипом, т. к. исключены удары промежуточных элементов при движении за счет замены конфигурации - вытянутый шестиугольник (между днищами стаканов 7 и 8) - на эллипс. Конфигурация эллипс позволяет более эффективно гасить колебания, чем шестиугольник, исключает потерю прочности промежуточных элементов 4. Увеличению прочности конструкции, ее надежности и долговечности существенно способствует железобетонный пояс 10.

Формула изобретения

Фундамент сейсмического здания, сооружения, включающий верхнюю и нижнюю опорные части, в которых образованы стаканы с вогнутыми днищами, и размещенный между ними промежуточный элемент в виде шара, при этом верхняя и нижняя опорные части снабжены выступами, размещенными по их периметру на образованных одна к другой сторонах; выступы верхней опорной части примыкают к выступам нижней опорной части, а промежуточный элемент размещен с зазором относительно днища стакана верхней опорной части, отличающийся тем, что в углах, на пересечениях стен здания, сооружения в верхних и нижних опорных частях установлены стаканы с вогнутыми днищами в виде сферы более одного, с размещенными между ними промежуточными элементами в виде шаров, при этом внутренняя полость между днищами стаканов имеет форму эллипса, а верхние опорные части связаны между собой железобетонным поясом, на который опирается надземная часть здания, сооружения.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

Похожие патенты:

Изобретение относится к области строительства и может быть использовано при строительстве зданий и сооружений в сейсмоопасных районах

Изобретение относится к области строительства, а именно к обеспечению сейсмостойкости фундаментов сооружений, создаваемых на мягких грунтах

Изобретение относится к строительству, а именно к системам сейсмо- и виброзащиты зданий и сооружений

Изобретение относится к области строительства, а именно к основным элементам здания, которые обеспечивают сейсмостойкость самого здания

Изобретение относится к строительству, в частности к сборно-монолитным каркасам с плоскими дисками перекрытий, и может быть использовано при возведении одноэтажных или многоэтажных жилых и общественных зданий в различных районах, в том числе и сейсмических

Изобретение относится к области строительства в сейсмических районах

Изобретение относится к строительству, а именно к строительству многоэтажных зданий карстосейсмоустойчивой конструкции

Изобретение относится к строительству и может быть использовано при возведении многоэтажных зданий из объемных блоков в районах с сейсмичностью до 9 баллов

Изобретение относится к области строительства

Изобретение относится к усадебному строительству, в частности к строительству усадебного дома, мастерской, бани и других построек

Изобретение относится к области строительства, а именно к способам возведения свайных фундаментов для зданий и сооружений на грунтах II типа по просадочности

Изобретение относится к строительству и может быть использовано при подготовке оснований, сложенных просадочными грунтами

Изобретение относится к области строительства, а именно к обеспечению сейсмостойкости фундаментов сооружений, создаваемых на мягких грунтах

Изобретение относится к области строительства, а именно к конструкциям фундаментов зданий и сооружений, возводимых в условиях сейсмических воздействий

Изобретение относится к строительству, а именно к системам сейсмо- и виброзащиты зданий и сооружений

Изобретение относится к области строительства, а именно к основным элементам здания, которые обеспечивают сейсмостойкость самого здания

Изобретение относится к строительству, в частности к свайным фундаментам зданий и сооружений, возводимых на просадочных грунтах

Изобретение относится к строительству, а именно к конструкциям оснований под фундаменты сейсмостойких зданий, сооружений

Изобретение относится к строительству и предназначено для возведения малоэтажных зданий в сейсмических районах с расчетной сейсмичностью 7 и более баллов

Изобретение относится к области строительства, а именно к строительству многоэтажных и других зданий, строящихся на слабых и водонасыщенных основаниях

Изобретение относится к области фундаментостроения, в частности конструкциям фундаментов зданий, сооружений, возводимых в условиях сейсмических воздействий

www.findpatent.ru

Методы сейсмоизоляции фундаментов сооружений | Статья в сборнике международной научной конференции

Библиографическое описание:

Ушаков А. С. Методы сейсмоизоляции фундаментов сооружений [Текст] // Технические науки: проблемы и перспективы: материалы Междунар. науч. конф. (г. Санкт-Петербург, март 2011 г.). — СПб.: Реноме, 2011. — С. 180-186. — URL https://moluch.ru/conf/tech/archive/2/236/ (дата обращения: 23.06.2018).

В современных конструктивных решениях нельзя повысить сейсмостойкость, только повысив величины сечений, прочность, вес. Конструкция может быть более прочной, но не обязательно экономически эффективной, потому что и вес, и инерционная сейсмическая нагрузка могут увеличиться еще больше. Требуются новые эффективные методы сейсмозащиты. Подобные решения подразумевают изменение массы и жесткости, демпфирование системы в зависимости от ее перемещений и скоростей. На сегодняшний день известно более 100 запатентованных конструкций сейсмоизоляции зданий и сооружений.

Во время землетрясений конструкции фундаментов повреждаются редко. Несмотря на это, значение фундаментов в обеспечении сейсмостойкости зданий велико. Фундаменты первыми воспринимают сейсмические толчки и передают их в верхние части здания. Система «грунт-фундамент» воздействует на изменение динамических свойств здания, что соответственно изменяет величину действующих на него сейсмических нагрузок.

В основании стен сохранившихся памятников архитектуры обнаружены мягкие прокладки (на уровне верха фундаментов) из камышитовых подушек, пластических глин и других местных материалов. Зодчие Средней Азии усиливали ослабленный стык сопряжения фундамента с цоколем. Толщина шва здесь достигала высоты кирпича.

При строительстве мавзолеев в скалистом грунте котлованы заполняли рыхлой землей, песком и фундамент возводили по ним. При таком решении уменьшалась концентрация напряжений в фундаментах, а грунтовая подушка частично гасила высокочастотные колебания грунта при землетрясениях.

Применялись и другие инженерные решения, направленные на снижение воздействий колеблющихся при землетрясениях фундаментах на подземные части зданий. Были предложены катковые опоры, фундаменты со сферическими концами.

В этой статье будут рассмотрены виды пассивной сейсмозащиты фундаментов зданий. Их классификация, по мнению авторов [6,7,8], может быть представлена в виде схемы, представленной на рисунке 1.

Врезка1

Врезка3Врезка2

Врезка7Врезка4Врезка6Врезка5

Врезка8Врезка9

Врезка10Врезка11

Рис. 1. Классификация систем пассивной сейсмозащиты фундаментов по принципу их работы

В системах сейсмогашения, включающих демпферы и динамические гасители, механическая энергия колеблющейся конструкции переходит в другие виды энергии, что приводит к демпфированию колебаний, или перераспределяется от защищаемой конструкции к гасителю.

В системах сейсмоизоляции обеспечивается снижение механической энергии, получаемой конструкцией от основания, путем отстройки частот колебаний сооружения от преобладающих частот воздействия. Различают адаптивные и стационарные системы сейсмоизоляции. В адаптивных системах динамические характеристики сооружения необратимо меняются в процессе землетрясения, «приспосабливаясь» к сейсмическому воздействию. В стационарных системах динамические характеристики сохраняются в процессе землетрясения.

С позиции принятой классификации ниже приводится обзор методов сейсмозащиты фундаментов сооружений, выполненный на базе зарубежного и отечественного опыта сейсмостойкого строительства.

Существующие системы сейсмоизоляции на основании принятой выше классификации подразделяются на две группы:

-адаптивные;

-стационарные.

Приведем некоторые конструктивные примеры, иллюстрирующие принцип работы систем сейсмоизоляции.

Стационарные системы сейсмоизоляции фундаментов

Типичным приемом устройства сейсмоизоляции при наличии возвращающей силы являются здания с гибким нижним этажом. Гибкий этаж может быть выполнен в виде каркасных стоек, упругих опор, свай и т.п. Один из возможных вариантов конструктивного исполнения гибкого этажа представлен на рисунке. Конструкция состоит из гибких опор, выполненных из пакета упругих стержней небольшого диаметра, размещенных между надземной и подземной частями здания.

Рис. 2. Здание с гибким нижним этажом

Здания на резинометаллических и резинопластиковых опорах сжатия получили широкое распространение за рубежом. В настоящее время используется несколько типов резинометаллических упругих, опор сжатия: французский, новозеландский, американский и итальянский вариант опор. Для предотвращения чрезмерной осадки зданий под нагрузкой от собственного веса, опоры выполняются жёсткими в вертикальной и податливыми в горизонтальной плоскости. Благодаря упругим свойствам резины, резинометаллические опоры обладают высокой прочностью при сжатии, растяжении и кручении. Однако стоимость самих фундаментов оказывается значительной и может достигать 30% от стоимости здания. И наряду с этим, резинометаллические и резинопластиковые опоры сжатия обладают малой временной надежностью[1,2,3]. Некоторые конструктивные примеры резинометаллических опор, представлены на рисунке 3.

Рис. 3. Антисейсмическая опора

Серьезной проблемой при проектировании сооружений на упругих опорах явилась сложность обеспечения их прочности при значительных взаимных смещениях сейсмоизолированных частей фундамента. Это послужило причиной широкого распространения кинематических опор при сооружении сейсмоизолирующих фундаментов. Принцип действия такой конструкции состоит в том, что во время землетрясения центр тяжести опор поднимается, в результате чего образуется гравитационная восстанавливающая сила. При этом колебания здания происходят около положения равновесия, и их начальная частота и период зависят от геометрических размеров используемых опор.

Необходимо отметить, что построенные фундаменты этого типа не имеют специальных демпфирующих устройств, и при длиннопериодных воздействиях силой более 8 баллов, согласно выполненным расчетам, возможно падение здания с опор. Это указывает на опасность фундаментов на кинематических опорах, если в них не предусмотрены дополнительные демпфирующие элементы.

Сейсмоизоляция, не обеспечивающая возвращающей силы, действующей на сейсмоизолированные части конструкции, реализуется путем устройства скользящего пояса. Одно из наиболее известных технических решений такого типа – сейсмоизолирующий фундамент фирмы Spie Batignolle и Electricite de France.

Конструкция антисейсмической фрикционной опоры показана на рисунке 4. Опора, поддерживающая верхнюю фундаментную плиту, состоит из фрикционных плит, армированной прокладки из эластомера (неопрена), нижней фундаментной плиты, бетонной стойки, опирающейся на нижнюю фундаментную плиту. Жесткость опор в вертикальном направлении примерно в 10 раз выше, чем в горизонтальном.

Сейсмоизолирующий фундамент фирмы Spie Batignolle является классическим примером сейсмоизоляции с последовательным расположением упругих и демпфирирующих элементов. При относительно слабых воздействиях, когда горизонтальная нагрузка на опорную часть не превосходит сил трения, система работает в линейной области; при увеличении нагрузки сила трения преодолевается и происходит проскальзывание верхней фундаментной плиты относительно нижней. При этом удается в несколько раз снизить нагрузки на оборудование и здание.

Рис. 4. Сейсмоизолирующий фундамент фирмы Spie Batignolle

Несмотря на ряд достоинств сейсмоизолирующего фундамента Spie Batignolle, рассмотренная конструкция имеет ряд недостатков. Критический анализ французского решения имеется, в нем, в частности, отмечается, при этом взаимные смещения фундаментных плит не превосходили 20 см.

В качестве конструктивных недостатков фундамента следует отметить невозможность избежать неравномерного давления на опоры при строительстве на нескальных грунтах, отсутствие средств регулирования сил трения, сложность смены прокладок во время эксплуатации.

Следует отметить, что традиционные сейсмоизолирующие устройства, в том числе и сейсмоизолирующие опоры, имеют существенный общий недостаток: они расчленяют цельную систему «здание-фундамент» на отдельные части, что приводит к ослаблению системы в угоду сейсмоизоляции определенной части этой системы. При этом возникают взаимные смещения между изолированной и неизолированной частями, а для ограничения этих взаимных смещений устанавливают демпферы, рассеивающие энергию сейсмического воздействия.

Рассмотрим сооружения, которые совместно с фундаментом образовывают единую цельную пространственную многосвязную систему, которая даже при отделении от основания сохраняет геометрическую неизменяемость. Устройство сейсмоизоляции должно относиться ко всей этой цельной системе, а не к отдельной ее части.

Примером такого конструктивного решения может быть здание (сооружение), объединенное со сплошной пространственной фундаментной платформой, между которой и выроненным основанием имеется скользящий слой, снижающий трение. При этом мощная сейсмическая волна проскальзывает под платформой, т.е. существенно снижается уровень больших горизонтальных сейсмических воздействий (в том числе несимметричных, крутильных и т.п.) на платформу и тем самым на верхнее строение. Цельность и многосвязность зданий с фундаментом позволяют воспринимать и вертикальные толчки. При этом возможные горизонтальные смещения будут иметь место не между отдельными частями зданий (т.е. не нарушается цельность), а между системой («здание-фундамент») и основанием. Небольшие (порядка нескольких сантиметров) смещения могут быть допустимы при планировке территорий, а для ограничения больших смещений будут установлены упоры (демпферы, возвратные устройства и т.п.) [4].

Таким образом, скользящий слой образует сейсмоизолирующее защитное устройство, не нарушающее целостность системы «здание-фундамент». Следует указать на другие возможные виды защитных сейсмоизолирующих (экранных) устройств, находящихся вне пределов системы «здание-фундамент», например, устройство траншей (рвов) поперек динамического воздействия.

Сопротивление свайных фундаментов сейсмическим воздействиям, их высокая несущая способность во время землетрясений, а также позитивное влияние свай на динамические характеристики сооружений бесспорно. Поэтому свайные фундаменты являются целесообразным инженерным решением фундирования здания.

Эффективно применение свайных фундаментов в условиях слабых грунтов в сейсмических регионах, особенно радикального успеха можно достичь при полной прорезке сваями слабых, сильно сжимаемых слоев основания и опирании их острия в несущий слой грунта Ӏ категории сейсмичности. Что касается свайных фундаментов со сваями, погруженными в грунт ӀӀ категории, то прежде всего должно быть решено являются ли сваями-стойками забивные сваи, какова их несущая способность.

С целью снижения сейсмического воздействия фундаментов на верхнее строение сооружения предлагались различного рода изоляторы, амортизаторы и т.д. Наиболее рациональным инженерным решением, разработанным в конце прошлого столетия как зарубежными (Чили) так и советскими (Россия, Молдова) специалистами являются свайные фундаменты с промежуточной «подушкой» из инертных материалов. Отличительной особенностью таких фундаментах является отсутствие жесткой связи между ростверком и сваями. По верху свай, забитых в грунт ӀӀӀ категории по сейсмическим свойствам, отсыпается и уплотняется песчано-гравелистая «подушка» , по которой укладывается железобетонная конструкция, подобная обыкновенному ростверку и рассчитывается как балка на упругом основании.

В свайном фундаменте с промежуточной подушкой резко снижается передача на верхнее строение горизонтальной (сейсмической) нагрузки, которая распределяется (рассеивается) по подушке[5].

  1. Стена здания;

  2. ЖБ ростверк;

  3. Песчаная «подушка»;

  4. Слабый грунт;

  5. Наголовник сваи;

  6. Забитая свая.

Рис. 5. Свайный фундамент с промежуточной «подушкой»

Адаптивные системы сейсмоизоляции фундаментов

Рассмотренные выше примеры сейсмоизоляции представляют собой системы, в которых динамические характеристики сохраняются в процессе землетрясения. Наряду с этими решениями в практике сейсмостойкого строительства получили распространение адаптивные системы. В этих системах динамические характеристики сооружения необратимо меняются в процессе землетрясения, «приспосабливаясь» к сейсмическому воздействию. Конструктивный пример этой системы сейсмоизоляции представлен на рисунке 6.

Рис. 6. Пример конструктивного решения зданий с выключающимися связями

В нижней части здания между несущими стойками нижнего этажа установлены связевые панели, отключающиеся при интенсивных сейсмических воздействиях, когда в спектре воздействия преобладают периоды, равные или близкие к периоду свободных колебаний сооружения. После отключения панелей частота свободных колебаний падает, период колебаний увеличивается, происходит снижение сейсмической нагрузки. При низкочастотном воздействии период свободных колебаний здания со связевыми панелями значительно ниже величин преобладающих периодов грунта, поэтому резонансные явления проявляются слабо и связевые панели не разрушаются.

Применение выключающихся связей наиболее эффективно в том случае, когда уверенно прогнозируется частотный состав ожидаемого сейсмического воздействия. В качестве недостатков необходимо отметить, что после разрушения выключающихся связей во время землетрясения необходимо их восстановление, что не всегда практически осуществимо. Кроме того, как известно, в некоторых случаях в процессе землетрясения в его заключительной стадии происходит снижение преобладающей частоты воздействия. В следствии этого возможно возникновение вторичного резонанса и потеря несущей способности конструкций здания. В этом случае требуется применение конструктивных мероприятий, что приводит к дополнительным затратам на строительство.

Выводы

В настоящей статье были аналитически рассмотрены современные методы сейсмоизоляции фундаментов зданий и сооружений. Многие из представленных моделей требуют дальнейших корректировок в расчетах и проектировании, теоретических и практических испытаний[9].

Расчеты, выполненные Я.М. Айзенбергом [8], показали, что относительные горизонтальные сейсмические перемещения перекрытий в сейсмоизолированных зданиях существенно ниже, чем в неизолированных зданиях. Соответственно, повреждения при сильных землетрясениях в сейсмоизолированных зданиях значительно ниже, чем зданий неизолированных.

Меры по сейсмозащите позволяют значительно снизить экономические потери. При правильном проектировании системы сейсмогашения и сейсмоизоляции фундаментов и здания в целом способны повысить надежность сооружения, сохранность оборудования, комфорт для жителей, а также самое главное — отсутствие необходимости восстановительных работ после сильных землетрясений.

Литература:

  1. Поляков С.В., Килимник Л.Ш., Черкашин А.В. Современные методы сейсмозащиты зданий. – М.:Стройиздат, 1989. -320с.

  2. Берковская Д.А. Мероприятия по антисейсмической защите конструкций зданий (Франция). // Строительство и архитектура Серия 14.1977. Вып.9, с. 10-12.

  3. Тыркина О.В. Конструктивные решения и методы расчета зданий на сейсмоизолирующих опорах из хлорпренового каучука (Франция). // Сейсмостойкое строительство. Реф. сб. Сер.14. – М.: ВНИИИС, 1985. Вып.14, с.1-8.

  4. Абовский Н.П., Енджиевский Л.В., Наделяев В.Д. Новые конструктивные решения для сейсмостойкого строительства в особых грунтовых условиях. // Сейсмостойкое строительство. Безопасность сооружений. 2004, №3, с.30-32.

  5. Баркан Д.Д., Межевой Г.Н. Исследование работы свайных фундаментов с промежуточной подушкой в сейсмических районах. / Сб.трудов НИИОСП им. Герсеванова. Вып. 67, - М.: Стройиздат, 1976.

  6. Уздин А.М. и др. Основы теории сейсмостойкости и сейсмостойкого строительства зданий и сооружений. СПб, 1993. 176с.

  7. Айзенберг Я.М. Сооружения с выключающимися связями для сейсмических районов. М.: Стройиздат, 1976. 232с.

  8. Айзенберг Я.М. Сейсмоизоляция высоких зданий // Сейсмостойкое строительство. Безопасность сооружений. №4, 2007. С. 41-43.

  9. Авидон Г.Э., Карлина Е.А. Особенности колебаний зданий зданий с сейсмоизолирующими фундаментами А.М. Курзанова и Ю.Д. Черпинского // Сейсмостойкое строительство. Безопасность сооружений. №1, 2008. С. 42-44.

Основные термины (генерируются автоматически): фундамент, процесс землетрясения, опор, система, здание, сейсмическое воздействие, фундамент фирмы, опор сжатия, верхняя фундаментная плита, верхнее строение.

moluch.ru

Что представляет собой сейсмоустойчивый фундамент?

Строительство современных жилых комплексов имеет в себе огромное количество уникальных методик и тактик, а многие компании даже применяют в своей работе схему сейсмоустойчивых фундаментов. Несмотря на то, что наша страна во многом находиться в безопасной зоне от землетрясений, соответствие мировым и европейским стандартам является необходимым и в большинстве случаев экономически обусловленным подходом. Стандартная структура сейсмоустойчивого фундамента представляет собой достаточно необычную и оригинальную конструкцию.

Сама платформа состоит из большого количества бетонных и арматурных перекрытий, которые связаны между собой специальными отсеками и прослойками. В подобных прослойках устанавливаются определенные материалы и амортизирующие системы, которые позволят в случае землетрясения удержать остовы здания в амплитуде весового баланса и тем самым не дать всему сооружению упасть или разрушиться. Наиболее популярным является использование таких фундаментов в современных высотных жилых комплексах, которые состоят исключительно из арматурных каркасов.

Дело в том, что вес подобных зданий сравнительно невысок, а значит, удерживать их на весу становится гораздо легче.

Основным минусом сейсмоустойчивых перекрытий является то, что они невероятно уязвимы к влаге, поскольку не имеют внешней защиты или обшивки, именно поэтому гидроизоляция является одним из обязательных процессов.

Интересно заметить, что строительные эксперты города в такой ситуации предлагают своим клиентам проводить периодическое обслуживание задний такого класса. Работа с фундаментом проводится в несколько этапов. Прежде всего, специалисты проводят его полноценную диагностику, а также разрабатывают определенный план строительных работ по восстановлению поврежденных элементов. В некоторых ситуациях для проведения качественной гидроизоляции здесь требуется установка дополнительных каркасных соединений, которые будут удерживать на себе бетонные структуры.

Разумеется, использование технического оборудования здесь становится просто-напросто необходимым, именно поэтому цены на подобные услуги могут быть весьма высокими.

Тем не менее, в дальнейшем потребитель может быть уверен в своей безопасности даже во время экстремальных и чрезвычайных ситуаций, которые возникают по причине природных катаклизмов.

Сайт первоисточник

spo-64.nethouse.ru

41. Особенности устройства ленточных фундаментов в сейсмических районах. Схема.

Проектирование фундаментов зданий следует выполнять в соответствии с требованиями нормативных документов по основаниям зданий и сооружений и свайным фундаментам.

Глубину заложения фундаментов рекомендуется увеличивать путем устройства подвальных этажей.

Фундаменты зданий, возводимых на нескальных грунтах, должны, как правило, устраиваться на одном уровне. Подвальные этажи следует предусматривать под всем зданием. При расчетной сейсмичности 7 и 8 баллов допускается устройство подвала под частью здания. При этом следует располагать его симметрично относительно главных осей здания.

Для зданий выше 12 этажей устройство подвала под всем зданием обязательно.

При строительстве на нескальных грунтах по верху сборных ленточных фундаментов следует укладывать слой раствора марки 100 толщиной не менее 40 мм и продольную арматуру диаметром 10 мм в количестве три и четыре стержня при сейсмичности 7 и 8 баллов соответст­венно. Продольные стержни должны быть соединены поперечными с шагом 300-400 мм. В случае выполнения стен подвала из сборных панелей или монолитными, конструктивно связанными с ленточными фундаментами, укладка армированного слоя раствора не требуется.

В районах сейсмичностью 9 баллов ленточные фундаменты должны выполняться, как правило, монолитными.

В зданиях при расчетной сейсмичности 9 баллов стены подвалов должны предусматриваться, как правило, монолитными или сборно-монолитными.

42. Ленточные фундаменты в сейсмических районах с перепадом высот строительной площадки. Схемы.

43. Сборные ленточные фундаменты в сейсмических районах. Особенности конструктивных мероприятий обусловленных сейсмоопасностью.

При строительстве на нескальных грунтах по верху сборных ленточных фундаментов следует укладывать слой раствора марки 100 толщиной не менее 40 мм и продольную арматуру диаметром 10 мм в количестве три и четыре стержня при сейсмичности 7 и 8 баллов соответственно. Продольные стержни должны быть соединены поперечными стержнями с шагом 300-400 мм. В случае выполнения стен подвала из сборных панелей или монолитными, конструктивно связанными с ленточными фундаментами, укладка армированного слоя раствора не требуется.В районах сейсмичностью 9 баллов ленточные фундаменты должны выполняться, как правило, монолитными.В фундаментах и стенах подвала из крупных блоков должна быть обеспечена перевязка кладки в каждом ряду, а также во всех углах и пересечениях на глубину не менее 1/3 высоты блока; фундаментные блоки следует укладывать в виде непрерывной ленты. Для заполнения швов между блоками следует применять раствор марки не ниже 50.В каждом ряду блоков в местах углов, примыканий и пересечений устанавливать арматурные сетки с заведением их на 70 см от мест пересечения стен.

При прохождении сейсмических волн фундаменты зданий и сооружений могут испытывать подвижку относительно друг друга, поэтому рекомендуется возводить сплошные плитные фундаменты или фундаменты из перекрестных лент (рис.4.2, в) в монолитном или сборном варианте. Для усиления сборных фундаментов обязательно устраиваются перевязка блоков в узлах и укладка дополнительных арматурных сеток. В каркасных зданиях допускается применение отдельных фундаментов, которые должны раскрепляться железобетонными вставками(рис.4.2, б).

Рисунок 4.2 Конструкции фундаментов в сейсмически oпасных paйонax а - из перекрестных лент; б - закрепление отдельно стоящих фундаментов железобетонными вставками; 1 - сварные сетки; 2 – жирный цементно песчаный раствор.

studfiles.net


Смотрите также


loft абиссинка абиссинская скважина автономная канализация автономное водоснабжение автономное газоснабжение автономные газовые системы анализ воды арболит арболит достоинства арболит недостатки арболит своими руками артезианская скважина бетонный септик блок-хауз блок-хаус блокхауз блокхаус брама винтовой фундамент винтовые сваи выбор пиломатериалов выбор фундамента газгольдер Газобетон газобетон достоинства газобетон минусы газобетон недостатки газобетон это греющий пол деревянные окна деревянные фасады дизайн интерьеров дизайн хай-тек дома из арболита доркинг достоинства артезианских скважин евроокна. жб кольца забивная скважина звукоизоляция полов звукоизоляция помещений звукоизоляция своими руками звукоизоляция стен звукопоглощающие материалы имитация бревна имитация бруса интерьер в стиле хай-тек интерьеры инфильтратор инфильтратор для септика каменные стены канализация своими руками каркасник каркасный дом каркасный дом своими руками качество воды классицизм клеёный брус клееный брус клееный брус минусы клееный брус плюсы колодец куры брама видео лофт фото мансарда своими руками мансарда это минусы арболита мясные породы кур недостатки артезианских скважин недостатки клееного бруса объем инфильтратора огород в октябре окна ПВХ октябрьские работы в саду опилкобетон осенние работы в саду особенности стиля хай-тек отопление полами пиломатериалы плавающий пол Пластиковые окна плюсы газобетона поля фильтрации постройка фундамента пробковое покрытие пробковые полы размер септика расстояние от септика самодельный арболит самодельный септик санитарная зона септик септик из колец сибирская лиственница скважина скважина-игла сорта пиломатериалов стиль классицизм в интерьерах стиль лофт стиль хай-тек строим мансарду строительство фундамента таунхаус тепловой насос теплый пол типы фундаментов установить инфильтратор устройство каркаса устройство мансарды устройство септика устройство стен утепление утепление полов утепление стен утепление фасада фото интерьеров фундамент фундамент на сваях фундамент ошибки фундамент своими руками химический анализ воды хранение пиломатериалов электрический пол Электропол
 

ReadMeHouse
Энциклопедия строительства и ремонта