• Войти
  • Регистрация
 

Можно ли использовать винтовые сваи как заземление – требования к устройству. Заземление фундамента


Системы заземления. Рекомендации европейских стандартов. Фундаментные заземлители (Часть1).

Повсеместность использования на территории Польши фундаментных заземлителей – эторезультат требования, которое введено Распоряжением Министра инфраструктуры от 12 апреля 2002г. [2] касательно технических условий, которым должны отвечать здания и их расположение. Согласно §184, абзац 1 [2]: «В качестве заземлителей электрической системы следует использоватьметаллические конструкции зданий, арматуру фундаментов, а также другие металлические элементы, размещенные в неармированных фундаментах, представляющих собой искусственный фундаментный заземлитель».

Применение фундаментных заземлителей рекомендуется также в нормативных документах, касающихся как электрических, так и молниезащитных систем. Главные причины того, что специалисты отдают предпочтение такому заземлителю, связаны с легкостью и низкой стоимостью их выполнения, хорошим контактом фундамента с почвой, стабильностью его активного сопротивления во времени (зависимость удельного сопротивления фундамента от изменений температуры и влажности незначительна) и максимальным использованием его поверхности для рассеивания в грунте токов заземления.

Учитывая, что фундаментный заземлитель состоит из металлических элементов, залитых бетоном в фундаменте строительного объекта, для обеспечения непрерывности передачи тока в такой конструкции следует обращать особое внимание на качество соединения металлических элементов. В строительной практике арматурные стержни железобетонных конструкций соединяются преимущественно с помощью вязальной проволоки (рис. 5).

Соединение арматурных стержней с помощью вязальной проволоки Рис. 5. Соединение арматурных стержней с помощью вязальной проволоки (с согласия RST sp.j.)

 

В связи с этим, если фундамент должен быть эффективно использован как естественный заземлитель объекта, соединения арматуры фундамента должны быть низкоомными (с низким сопротивлением). Для получения определенных электрических соединений арматурных стержней рекомендуется комплектовать фундамент дополнительной внутренней ячеистой сетью, выполненной из стержней или полосового металла (рис. 6) и связанной со сталью арматуры с помощью винтовых зажимов. Еще более прочными являются сварные соединения.

Рекомендованное выполнение фундаментного заземлителя с использованием стальной ленты 1 Рекомендованное выполнение фундаментного заземлителя с использованием стальной ленты 2
Рис. 6. Рекомендованное выполнение фундаментного заземлителя с использованием стальной ленты (с согласия RST sp.j.)

 

Все мероприятия, связанные с дополнительным соединением арматурных стержней, должны быть согласованы с конструктором фундамента, чтобы удостовериться, что прочность фундамента соответствует требованиям проекта.

Существенное преимущество фундаментных заземлителей – стабильное во времени активное сопротивление заземления. Этот вопрос был хорошо описан на примере строительных объектов в работе [6]. На стабильность активного сопротивления фундаментного заземлителя влияет то, что обычно фундаменты зданий окружены грунтом с меньшим удельным сопротивлением, чем поверхностные слои, причем удельное сопротивление более глубоких слоев грунта меньше зависит от времени года и погодных условий. Фундаментный заземлитель в зданиях с несколькими подземными этажами расположен под самым низким этажом, поэтому на таких глубинах изменения температуры и влажности почвы в течение года настолько незначительны, что ими можно пренебречь.

В случае когда параметры фундаментного заземлителя (активное сопротивление, геометрические размеры) достаточны для проектируемого назначения, согласно процедуре, описанной в стандарте PN-EN 62305-3, не требуется применение дополнительных искусственных заземлителей. Однако из практических соображений, чтобы обеспечить возможность периодического контроля состояния такого заземлителя, можно применять дополнительные заземлители в местах спуска отводных проводов, что позволяет выполнять разъемные контрольно-измерительные соединения. Чаще всего, особенно при разветвленных фундаментных заземлителях, на сумму инвестиций это влияет незначительно, зато дает возможность проводить необходимые измерительные работы.

 

www.zandz.ru

что можно использовать, а что нет

В электрических установках при реализации защитных мер используют естественный заземлитель. В его роли может выступать стальная арматура, которая входит в состав железобетонных конструкций. Помимо этого, как естественное заземление применяются и различные коммуникации из металла, что расположены под землей. Например, это могут быть трубопроводы или изоляционная оболочка кабеля. Бывают случаи, когда используются и коммуникации, что находятся над землей, например, рельсы.

Преимущества перед искусственным контуром

Заземлитель естественного типа применяется только в том случае, когда он полностью удовлетворяет всем запросам, которые существуют к устройствам заземления. Искусственный заземлитель применяется в том случае, когда необходимо значительно понизить ток, что будет уходить в почву через естественный заземляющий контур.

Естественное заземление фото

Исходя из этого можно сделать вывод, что в большинстве случаев применяются естественные заземлители, при этом искусственные не применяются. Благодаря такой конструкции можно в большей мере сэкономить на материалах, которые используются при создании контура заземления. Помимо этого, силы на монтаж, финансовые расходы будут уменьшены, а использование приспособления будет проще.

Соединение элементов в конструкции

Неважно из чего сделаны детали конструкции, из металла или железобетона, главное то, что они должны соединяться таким образом, чтобы в этих деталях образовалась электрическая цепь, что будет проходить по самому металлу. Если конструкция железобетонная, то следует дополнительно подготовить закладные детали в ней. Их наличие должно быть на каждом этаже объекта недвижимости.

Благодаря этим закладным деталям в устройстве можно соединить электрическое или технологическое оборудование, которое следует заземлить. Если в зданиях существуют соединения в виде болтов, заклепок или сварки, то их будет достаточно для того, чтобы смонтировать постоянную электрическую цепь. Если же подобные соединения отсутствуют то можно использовать гибкие перемычки, которые приваривают к элементам конструкции. Сечение перемычек должно быть от ста квадратных миллиметров.

Что нельзя использовать из железобетонных конструкций в качестве заземлителей? Если сборный фундамент выполнен из железобетона, то естественный заземлитель к нему лучше не подсоединять. Если есть возможность, то лучше сначала соединить между собой арматуру близлежащих блоков, и лишь потом приступать к изготовлению естественного заземления. Если такое соединение осуществить нет возможности, то тогда лучше всего сделать искусственный заземляющий контур.

Фундамент

Между собой железобетонные конструкции соединяются следующим образом: в случае, если фундамент здания осуществлен из свай, тогда арматуру свай соединяют с блоками фундамента или с арматурой ростверка с помощью электродуговой сварки. Но такая сварка не подойдет для пространственных колон и металлических каркасов. В этом случае применяют точечную сварку.

Железобетонный фундамент как заземляющее устройство

Естественный заземлитель в виде железобетонного фундамента используется только в том случае, когда грунт, на котором располагается строение, обладает влажностью от трех процентов. Если влажность будет меньше, то фундамент строения будет оказывать очень большое электрическое сопротивление, и как результат не будет выступать в качестве заземляющего устройства.

Также железобетонный фундамент применяется как заземлитель еще и тогда, когда на него будет воздействовать любая агрессивная среда. К примеру, это могут быть подземные воды, у которых нет значительных показателей жесткости. Помимо этого, такой фундамент может выступать, как естественный контур заземления, если отсутствует гидроизоляция или его поверхность будет максимально защищена, согласно СНиП и ПУЭ, битумным покрытием.

Железобетонный фундамент не соединяется с заземляющим проводником в том случае, если он расположен в агрессивной среде, потому что это может привести к дополнительной коррозии. Также не рекомендуются использовать основу из бетона, если в самой структуре конструкции существует напрягаемая арматура.

Если просмотреть все озвученные выше ограничения и позволения, то можно сделать вывод, что подобное строение совершенно не подходит для искусственного заземления. Благодаря этому при монтаже рабочего заземления есть возможность сэкономить на проводниках. Ведь они будут располагаться в постройке, соответственно, их длина будет меньше, а это позволит сэкономить материалы и денежные средства.

Также хотелось бы отметить, что естественный заземлитель может быть не только из тех, что перечислены ранее. Существует еще большое количество возможных вариантов. К примеру, согласно ПУЭ п. 1.7.109 в его роли может выступать стальной трубопровод (только тот, в котором течет любая негорючая жидкость, о чем говорится в п. 1.7.110 того же ПУЭ) или обсадная труба, что используется в артезианских колодцах.

Перечень всех материалов, которые можно использовать для естественного заземления, а какие нет, предоставлен ниже:

п. 1.7.109

п. 1.7.110

Если все же для безопасности и защиты жилого или офисного здания было принято решение использовать исключительно естественное заземление, то необходимо учитывать следующий важный фактор: электрический ток, который проходит по электрическому заземленному проводу, не должен превышать допустимое значение каждого в отдельности элемента, что входят в состав заземляющего устройства.

Вот и все, что мы хотели рассказать о том, что такое естественный заземлитель и какие материалы можно использовать для организации такого варианта защитного контура. Надеемся, предоставленная информация была для вас полезной!

Рекомендуем также прочитать:

Нравится(0)Не нравится(0)

samelectrik.ru

Можно ли использовать винтовые сваи как заземление – требования к устройству

Организация электробезопасности является одним из основных требований при вводе в эксплуатацию жилых помещений, частных домов или отдельно стоящих хозяйственных построек. Удар молнии или короткое замыкание может привести не только к материальным потерям, но и повлечь за собой более трагические последствия. Предотвратить подобные случаи позволяет сооружение надежного заземляющего контура. Среди многочисленных вариантов его устройства некоторые профессиональные строители рекомендуют использовать в качестве электродов заземления винтовые сваи. Однако специалисты, работающие в электротехнической отрасли, ставят под сомнение целесообразность такого применения изделий, поэтому единого мнения на этот счет не существует.

Заземление

Винтовойсвайный фундамент и заземление

Среди объективных преимуществ применения винтовых свай в малоэтажном строительстве стоит выделить, прежде всего, отсутствие большого объема земляных работ, сравнительно низкую стоимость возведения и достаточную степень прочности основания будущей постройки. При этом многие частные застройщики задаются вопросом – можно ли использовать в качестве заземления сам фундамент возводимой свайно-винтовой конструкции и как это может отразиться на ее эксплуатационных характеристиках.

Казалось бы, значительное заглубление опор основания постройки предоставляет исключительную возможность качественного заземления домашней электрической сети. Однако стоит помнить, что винтовые сваи для повышения ресурса эксплуатации фундамента обрабатываются различными антикоррозионными лакокрасочными составами. Изготовленные, как правило, на основе полиуретановых смол, такие покрытия делают опору непригодной для использования в качестве заземления, так как являются хорошим диэлектриком.

Винтовые сваи, которые можно использовать для заземления, не должны иметь нанесенных диэлектрических покрытий.

Некоторые частные застройщики в целях максимальной экономии средств применяют для возведения свайного фундамента винтовые опоры, изготовленные кустарным способом. Их антикоррозийное покрытие, чаще всего, представляет собой нанесенный тонкий слой дешевой масляной краски, который разрушается уже при ввинчивании опоры в грунт. Из-за электролитической коррозии посредством блуждающих подземных токов, такое фундаментное основание быстро приходит в негодность, а создание заземляющего контура из свайного поля возводимого фундамента лишь ускорит процесс его разрушения.

Оцинкованные сваи

Для заземления дома наиболее оправданным является применение оцинкованных винтовых свай. Существуют разные технологии нанесения подобного антикоррозийного покрытия:

  • холодный метод оцинкования, при котором нанесение защитного слоя производится цинкосодержащими красками;
  • горячая оцинковка, предусматривающая покрытие изделия горячим цинком в условиях промышленного производства.

Винтовые сваи холодной оцинковки не рекомендуется применять для заземления в силу нестойкости покрытия к истиранию. Нанесенный защитный слой легко счищается с обработанной поверхности при прохождении сваями пластов песчаника или известняка еще на этапе их вкручивания в грунт. Со временем, изделия с таким покрытием начнут неминуемо коррозировать и придут в негодность.

Подобного недостатка лишены винтовые опоры, антикоррозийная обработка которых производилась горячим цинком. Более того, сплошное защитное покрытие, присутствующее как на наружных, так и на внутренних поверхностях полой сваи, при незначительных повреждениях имеет способность к самовосстановлению на молекулярном уровне. Однако стоимость таких изделий сравнительно высока, что является ограничением их применения в индивидуальном строительстве.

Решая проблему заземления фундамента, необходимо руководствоваться требованиями Правил устройства электроустановок (ПУЭ).

Нормативы предписывают сооружение заземляющего контура зданий только в виде отдельной конструкции! Таким образом, категорически не рекомендуется производить какие-либо подключения непосредственно к самому свайному полю или ленте винтового фундамента.

Свайный фундамент

Оцинкованные винтовые сваи, антикоррозийное покрытие которых нанесено по горячей технологии, более всего подходят для заземления. От правильности его устройства во многом зависит электробезопасность домовой сети и надежность в исполнении возложенных на нее защитных функций.

Устройство защитного заземления винтовыми сваями

Сооружаемая конструкция для заземления дома обычно представляет собой металлический замкнутый контур в форме равностороннего треугольника. В вершинах его углов располагают винтовые сваи, использующиеся в качестве заземляющих электродов. Их заглубление производится ниже отметки уровня промерзания грунта, величина, которой принимается на основе усредненных значений для конкретного региона за последние несколько лет.

Исходя из производимого промышленностью стандартного ряда типоразмеров, для устройства заземляющего контура вполне подойдет использование винтовых опор диаметром 57 мм. При стандартной длине, составляющей 2-2,5 метра, изделия можно применять в большинстве регионов с умеренным климатом. Выполнение работ производится в следующей последовательности.

  1. Под сооружение заземляющего контура выбирается подходящая площадка на удалении не менее 1 метра от фундамента дома и производится разметка под расположение вкручиваемых винтовых свай. При этом необходимо учитывать, что расстояние между намечаемыми точками не должно быть меньше длины самой опоры.
  2. Намеченные точки вершин треугольника соединяют между собой прорываемой по его периметру траншеей, глубина которой должна составлять не менее полуметра.
  3. В вершинах углов вкручивают винтовые сваи.
  4. Элементы конструкции соединяют между собой в замкнутый контур при помощи сварки. При этом можно использовать различный металлопрокат, толщина сечения которого составляет не менее 4 мм. Проваренные места обрабатывают антикоррозийными составами.
  5. Со стороны одного из углов сооружаемой конструкции прорывают еще одну траншею в направлении к распределительному электрощиту. В нее укладывают соединительный проводник.
  6. Крепление проводника производят обычным гаечным соединением на предварительно приваренный к обвязочному контуру болт. Второй конец подсоединяют к главной заземляющей шине силового распределительного щитка.

Устройство заземления

После окончания монтажа необходимо проверить сопротивление заземляющего контура. Согласно ПУЭ, его значение для электрической сети напряжением 220 В не должно быть более 30 Ом. Измерения производят в сухую погоду (при максимальном сопротивлении самого грунта). Если проведенные измерения удовлетворяют техническим нормам эксплуатации, можно приступать к обратной засыпке траншеи.

Преимущества и недостатки устройства заземления винтовыми сваями

Преимущества использования винтовых свай обусловлены, прежде всего, удобством монтажа сооружаемой заземляющей конструкции. Ввинчивание опоры освобождает от значительного объема земляных работ. Толщина стенки сваи, составляющая от 3 до 5 мм, гарантирует длительные сроки эксплуатации, а большая площадь поверхности – надежность заземления.

Тем не менее, некоторые специалисты указывают на то, что наличие сварных швов является недопустимым для элементов конструкций, применяемых для заземления объектов. Места сварки в первую очередь подвергаются электролитической коррозии. Присутствие вблизи заземленной постройки электроподстанции, железнодорожных путей или вышек сотовой связи, где высока вероятность утечек электричества в грунт, приводит к существенному сокращению сроков эксплуатации и разрушению винтовой сваи.

До проведения работ по устройству заземляющей конструкции частного дома рекомендуется обратиться за консультацией к сотрудникам из обслуживающей данный район сетевой организации энергоснабжения. Они помогут произвести расчеты для качественного заземления, посоветовать, какие материалы лучше использовать, а также, при необходимости, составят проектную документацию.

semidelov.ru

Ошибки при строительстве ввода-вывода в фундаменте. Арматура в бетоне как конденсатор. | ImhoDom.Ru

Как правило, фундамент заливается в большой спешке. Эй смотри, сосед уже залился, а мы еще нет – давай быстрее. Смотри, какая хорошая погода – давай быстрее бетон заказывай, пока дождяра не превратил наш уютный котлованчик в бассейн. Алле, фундамент заказывали, завтра приедем? Ну не знаю, есть ли такое правило, но со мной почему то именно так и было, что, естественно, вылилось в несколько ошибок.

Ну, во-первых, на этапе фундамента мало кто задумывается о таких философских вещах как, где будет проходить канализация, как мы заведем в дом воду, газ и электричество. И совсем уж мало людей знают такое слово как молниеотвод, и что его можно уже начинать продумывать… а не тогда когда в дом ударила молния уже пора вселяться. Про молниеотвод, скажем честно, вообще мало кто задумывается.

Про канализацию все просто. Канализационные трубы залегают ниже уровня земли и, естественно, ненароком в обязательном порядке как минимум в одном месте пронизывают ваш фундамент. А ведь одно отверстие в фундаменте под канализационную трубу стоит доллар за сантиметр, как минимум. Именно так я потерял первые 80$ из-за того, что не продумал где, на какой высоте, под каким углом, и в каком месте необходимо заложить капсулы из трубы диаметром превышающей 110мм (например 160 мм) при заливке бетона. Естественно, без консультации грамотного сантехника здесь не обойтись. А найти такого можно только по рекомендациям. И желательно хотя бы двум. Еще не меньшей сложностью будет намертво закрепить эти вкладыши, чтобы рухнувший из миксера бетон не отправил их не по назначению. Причем самому возможно будет это сделать проще, чем объяснить это алкоголикам мастерам по халтуре заливке фундаментов.

Кстати,  мне рекомендовали внутри дома канализационную трубу класть на стальной швеллер, чтобы она не треснула (чтобы труба не сдвигалась грунтом зимой). Какое расточительство. Знаете, сколько стоит швеллер? Может его еще и на фундамент закрепить для гарантии? А закрепить в швеллере 500-й маркой бетона, как вам? В общем, гибкости пластиковой канализационной трубы достаточно, чтобы она могла претерпеть небольшие подвижки грунта. Но канализационная труба может, бесспорно, треснуть от вибротрамбовки. Вот поэтому то и нужно сначала утрамбовать обратную засыпку, а уже потом укладывать канализационные трубы в небольшие неглубокие траншеи присыпав их песочком сверху и утрамбовав водичкой и на этот раз - ножками. Про швеллеры под трубами слышу впервые.

С электрикой все гораздо проще. Электрический кабель можно завести в дом под фундаментом. Постойте… Но для этого надо всего лишь раскопать фундамент с обоих сторон… Еще 20$, как минимум. А ведь тоже можно заранее на необходимой высоте заложить в бетонную стенку вкладыш из гибкой трубы (либо уже после фундаментных работ, но до засыпки) и вывести его наверх в том месте, где планируется установка внутридомового электрического щитка, так чтобы оставалось в него лишь просунуть толстый вводной электрический кабель.

Ввод в дом воды должен по-любому осуществляться на уровне ниже фундамента (ну банально чтобы зимой вода в трубе не замерзла), но кинуть вкладыш из гибкой трубы под фундаментом и вывести его наверх внутри фундамента еще до его засыпки – несравненно проще и умнее. А мне надо было сделать так два раза – для центрального водоснабжения и для насоса, который будет качать местную воду для полива. А землекопы попадаются не всегда адекватные и работящие, чегоужтам. Ну и уже совсем фигурой высшего пилотажа будет поспрашивать уже опытных соседей и узнать какого диаметра водопроводная труба необходима (для центрального водоснабжения) и проложить трубу с улицы до места установки счетчика воды (либо установки насоса) с небольшим запасом.

И ведь продумать это заранее заняло бы пол часа, еще пол часа-час на поездку на стройрынок и поиск необходимых вкладышей, а на выходе получили бы экономию и денег и собственного времени, на контроль за выполнением задачи. 

Теперь поговорим о том, что делают чуть более чем никто из застройщиков. О молниезащите в фундаменте. Вопрос интересный и я очень жалею, что не знал, что так можно сделать. Говорят, в польских строительных проектах это все уже заложено и разжевано. Но мы то делаем по-нашему, по дедовскому способу, через жопу по фасаду дома (это конечно, если делаем вообще). Позволю себе процитировать великого классикапервую попавшуюся вырезку о заземлении молниеотвода на арматуру фундамента.

ЗАЗЕМЛЕНИЕВ любом случае - как для "внешней", так и для "внутренней" молниезащиты - очень важна роль заземления. И об этом стоит поговорить подробнее. Вернемся к нашей инструкции. Она настоятельно рекомендует заземлять молниеотводы на арматуру фундамента дома или, если это невозможно, заглублять в землю штыри-электроды (кстати, заземлять на арматуру фундамента тоже можно не всегда, здесь есть свои ограничения: если фундамент гидроизолируется составами на эпоксидной основе или если влажность грунта меньше 3%). Электроды должны заглубляться так, чтобы достигать влажных слоев почвы. Но не везде и это возможно, особенно на скальных грунтах. Удельное сопротивление самой почвы тоже разное: скальные грунты имеют значение удельного сопротивления до 3000 Ом, а смешанный грунт - 150-200 Ом. Поэтому не все так просто с заземлением. В идеале его надо выполнять на основании измерений удельного сопротивления грунта, на котором стоит дом, и соответствующих расчетов для определения количества и поперечного сечения электродов, глубины их залегания в грунт. При большом удельном сопротивлении грунтов очень хорошо присоединять к заземляющему устройству проходящие поблизости водопроводные трубы, обсадные трубы артезианских колодцев или свинцовые оболочки кабелей.

В любом случае, по поводу молниезащиты лучше проконсультироваться у профессионалов, если такие существуют в вашем городе (про то, что есть профессионалы, которые захотят вам втюхать свою систему молниезащиты я верю охотно). В общем, я просто намекнул, как можно эффективно и недорого сделать заземление, а уж о правильном его устройстве лучше сами погуглите.

 

imhodom.ru

Измеряем сопротивление заземления фундамента

Вторая часть статьи "Молниезащита на строительном объекте"

 

Не стоит спешить с измерениями сопротивления заземления созданного фундамента. Все рекомендации об его использовании в качестве заземляющего устройства основаны на том, что гидрофобный бетон подсасывает влагу из грунта вместе с естественно растворенными в ней солями. В итоге арматурные стержни фундамента оказываются в той же среде, что и размещенные непосредственно в грунте. Диффузия влаги из грунта в бетон занимает немалое время. До контрольных измерений лучше подождать 1 – 2 месяца.

Методика измерений сопротивления заземления хорошо известна по многочисленным руководствам. Как правило, там фигурирует схема, представленная на рис. 1.

Типичная схема измерения сопротивления заземления фундамента здания

Рис. 1. Типичная схема измерения сопротивления заземления фундамента здания

Цепь измеряемого тока замыкается через вспомогательный токовый электрод (TЭ), а напряжение на фундаменте измеряется относительно потенциального электрода (ПЭ), удаленного на 3 – 5 максимальных габаритных размеров D, где потенциал мало отличается от нуля. Частное от деления измеренного напряжения на ток дает искомое сопротивление заземления.

За внешней простотой схемы скрывается серьезная проблема. Габаритный размер строящегося здания вполне может превысить 100 м, а электроды надо удалять от него на расстояние в 300 – 500 м, причем, все это пространство должно быть свободным от подземных металлических конструкций. Такое сложно обеспечить в черте городской или промышленной застройки. Сближение же вспомогательных электродов с фундаментом (пусть даже вынужденное) неизбежно ведет к ошибке. Очень плохо, что сопротивление заземления оказывается при этом заниженным.

В последнее время для экономии свободного пространства токовый и потенциальный электроды рекомендуется располагать на одной прямой (рис. 2).

Схема измерения с расположением вспомогательных электродов на одной прямой

Рис. 2. Схема измерения с расположением вспомогательных электродов на одной прямой

Поскольку токи в измеряемом заземлителе и во вспомогательном электроде ТЭ противоположно направлены, на прямой между ними обязательно располагается точка нулевого потенциала (здесь полная аналогия с потенциалом одинаковых по величине и противоположных по знаку электрических зарядов). В окрестности этой точки нулевого потенциала и рекомендуется располагать потенциальный электрод. Например, в некоторых зарубежных заводских инструкциях предписывается rpot = 0,62rtok. Детальный компьютерный эксперимент (рис. 3) показал, что наилучший результат дают измерения при расположении потенциального электрода точно по середине прямой, связывающей измеряемый фундамент с токовым электродом. Даже для очень больших по площади зданий погрешность измерения не превышает здесь 10%, невзирая на то, что расстояние до электрода ТЭ не превышало 0,5D вместо предписываемых нормативных значений 3 – 5 D. Подробный количественный анализ схемы представлен в книге "Вопросы практический молниезащиты", которая была издана в прошлом году по инициативе проекта ZANDZ.ru.

Погрешность измерения сопротивления заземления фундамента здания в зависимости от расстояния D при различном размещении потенциального электрода

Рис. 3. Погрешность измерения сопротивления заземления фундамента здания в зависимости от расстояния D при различном размещении потенциального электрода

Э. М. Базелян, д.т.н., профессорЭнергетический институт имени Г.М. Кржижановского, г. Москва

Читайте далее "3. Какие молниеотводы нужны на стройке?"

 

Смотрите также:

www.zandz.ru

Как правильно выполнить заземление сваи: технология работ

  • Монтаж фундамента
    • Выбор типа
    • Из блоков
    • Ленточный
    • Плитный
    • Свайный
    • Столбчатый
  • Устройство
    • Армирование
    • Гидроизоляция
    • После установки
    • Ремонт
    • Смеси и материалы
    • Устройство
    • Устройство опалубки
    • Утепление
  • Цоколь
    • Какой выбрать
    • Отделка
    • Устройство
  • Сваи
    • Виды
    • Инструмент
    • Работы
    • Устройство
  • Расчет

Поиск

Портал о фундаментах Портал о фундаментахФундаменты от А до Я.
  • Монтаж фундамента
    • ВсеВыбор типаИз блоковЛенточныйПлитныйСвайныйСтолбчатый

      Фундамент под металлообрабатывающий станок

      фундамент лента

      Устройство фундамента из блоков ФБС

      Установка опалубки

      Заливка фундамента под дом

      вухэтажного загородного дома с мансардой

      Характеристики ленточного фундамента

  • Устройство
    • ВсеАрмированиеГидроизоляцияПосле установкиРемонтСмеси и материалыУстройствоУстройство опалубкиУтеплениеУстранение трещин в стенах фундамента

      Устранение трещин в стенах фундамента

      Опалубка для ростверка

      Как армировать ростверк

      Арматура траншея

      Необходимость устройства опалубки

      гидроизоляция цоколя

      Как сделать гидроизоляцию цоколя

  • Цоколь
    • ВсеКакой выбратьОтделкаУстройствоискусственный материал

      Отделка фундамента камнем

      Выбор цокольной плитки для фасада

      Выбор цокольной плитки для фасада

      Что такое цоколь

      Что такое цоколь

      Закрыть свайный фундамент

      Как закрыть винтовые сваи

  • Сваи
    • ВсеВидыИнструментРаботыУстройствоиспытания свай

      Динамические и статические испытания свай

      Использование железобетонных свай

      Использование железобетонных свай

      винт свая

      Изготовление винтовых свай своими руками

      Забивка свайного фундамента

      Забивка свайного фундамента

fundamentaya.ru

Заземление. Естественные заземлители.

Из чего делают естественное заземление?

Чаще всего для того, чтобы заземлить электроустановку, используют заземлители естественного типа, например металлические части (арматуру), входящие в устройство железобетонных элементов, допустим, фундаменты опоры линий электропередач и подстанций, а также фундаментов зданий. Кроме того, в качестве естественного заземлителя могут использоваться разного рода металлические подземные коммуникации, например трубопроводы, броня или оболочка кабелей. В некоторых случаях допустимо для заземления использовать и наземные коммуникации, например рельсовые пути.

Чем использование естественных заземлителей лучше по сравнению с искусственными?

Естественные заземлители допустимо использовать в случае, если они способны обеспечить выполнение абсолютно всех требований, которые предъявляют к заземляющим конструкциям.

Искусственные же заземлители нужно применять, когда нужно в значительной степени уменьшить токи, которые через естественные заземлители будут уходить в землю.

Это значит, что в большинстве случаев вы можете использовать только естественные заземлители, не прибегая к искусственным. С помощью данного конструктивного шага можно в значительной степени уменьшить количество материалов, необходимых для сооружения заземления, кроме того будут снижены финансовые и трудовые затраты, а также эксплуатация заземляющего устройства будет намного проще, нежели при применении искусственного заземления.

В каком случае в качестве заземляющего устройства можно применять железобетонный фундамент строения?

Данный технологический шаг разрешается использовать лишь в том случае, если грунт, на котором установлено строение, имеет влажность 3% или больше. Бетон при меньшем показателе влажности способен оказывать достаточно сильное электрическое сопротивление, следовательно, он не будет представлять собой заземляющую конструкцию.

Железобетонный фундамент можно использовать в качестве заземлителя еще и в том случае, если на него будет оказывать воздействие какая-нибудь не слишком агрессивная среда, например грунтовые воды с небольшим показателем жесткости. Кроме того, допустимо применение фундамента в качестве заземлителя при отсутствии гидроизоляции или в случае, если поверхность фундамента будет дополнительно защищена с помощью битумного покрытия, как этого требует СНиП.

Когда категорически запрещено использовать железобетонные фундаменты в качестве заземляющего устройства?

Не следует подводить заземляющий провод к железобетонному фундаменту строения в случае, если он находится в достаточно агрессивной среде, так как это вызовет дополнительную коррозию.

Также не следует использовать железобетонный фундамент в качестве естественного заземлителя, когда железобетонные конструкции имеют в своей структуре напрягаемую арматуру.

Если учесть все указанные выше разрешения и ограничения, то может получиться так, что в вашем строении можно вообще отказаться от изготовления искусственного заземлителя. Это позволит в значительной степени уменьшить длину заземляющих проводников, которые будут находиться в самом строении, что в итоге приведет к достаточно ощутимой экономии средств и материалов.

Как необходимо соединять элементы заземляющего устройства?

Абсолютно все детали как металлических, так и железобетонных конструкций должны быть соединены таким образом, чтобы в них была сделана непрерывная электрическая цепь, которая проходит непосредственно по металлу.

Если колонны изготовлены из железобетона, то нужно дополнительно предусмотреть специальные закладные детали в них, которые должны находиться на каждом из этажей здания.

Данные элементы конструкции нужны для того, чтобы к ним можно было присоединить заземляемое электрическое и технологическое оборудование.

Если в зданиях имеются сварные, болтовые или же заклепочные соединения, то их будет вполне достаточно для того, чтобы соорудить непрерывную электрическую цепь по металлу. Если некоторые из элементов металлоконструкций не оснащены подобными соединениями, то к ним нужно дополнительно приварить гибкие перемычки, сечение которых должно составлять 100 мм2 или даже больше.

Какие железобетонные конструкции не стоит использовать в качестве заземлителей?

Лучше всего не подводить заземляющий провод к сборным фундаментам, выполненным из железобетона. По возможности стоит соединить арматуру соседних блоков между собой, лишь после этого допустимо изготовление естественного заземления. В противном случае, если этого сделать не удастся, лучше всего изготовить искусственное заземление.

Как следует соединять железобетонные конструкции между собой?

Если фундамент дома выполнен из свай, то их арматуру лучше всего соединить с арматурой ростверка или блоков фундамента с использованием электродуговой сварки.

Однако пространственные каркасы колонн и стаканов фундаментов, которые обычно выполняют из металла, а также арматурные сетки их подошв нужно сваривать путем точечной сварки.

Из чего изготавливают закладные детали?

Закладные детали лучше всего сооружать в виде отрезков, выполненных из угловой стали размерами 63 х 63 х 5 мм, а длиной около 60 мм. Их следует приварить к арматуре таким образом, чтобы они выходили на поверхность бетона.

Для изготовления металлических перемычек используют стержни диаметром 42 мм. Их приваривают непосредственно к закладным деталям.

Если здание будет оборудовано молниеприемной сеткой, она должна быть объединена в единую конструкцию с колоннами, которые используются в роли токоотводящих проводников, а также с фундаментами, выполняющими функцию заземлителя. При этом к данной сетке нужно присоединить все конструкции, изготовленные из металла и выступающие над кровлей, например антенны, вентиляционные шахты, трубы и прочие металлические изделия.

Металлические перемычки необходимо размещать в конструкции строения в случае, если в роли естественного заземлителя будут выступать трубы водопровода. Данные перемычки необходимо устанавливать на водомерах и задвижках.

В случае если при проведении ремонтных работ нужно снять перемычку, то предварительно необходимо установить еще одну. Кроме того, заземляющие проводники нужно соединять с трубами водопровода за водомером.

Категорически запрещается использовать в качестве заземляющего проводника канализационный трубопровод, так как в месте своих стыков канализационные трубы не обладают действительно качественным электрическим контактом.

На подстанциях в качестве естественных заземлителей могут выступать стойки из железобетона. Однако в этом случае для их изготовления должен использоваться специальный электротехнический бетон.

Какие естественные заземлители используются на линиях электропередач?

В данном случае в качестве заземлителя можно использовать подножники, изготовленные из железобетона и свай. Так поступать наиболее разумно в случае, если они устанавливаются на грунт, среднее сопротивление которого составляет 300 Ом/м, то есть в глиняных и супесчаных грунтах.

Кроме того, был проведен целый ряд экспериментов, которые показали, что даже в песчаных и скальных фунтах бетон основания линии электропередач получает постоянное увлажнение.

Из-за этого уже через несколько месяцев после его установки он превращается в естественный заземлитель, причем сопротивление данной конструкции в течение года будет не слишком значительно колебаться, так что такими значениями можно и пренебречь.

Какие еще есть естественные заземлители?

Помимо тех заземлителей, о которых было сказано выше, существует еще целый ряд возможных естественных заземлителей, например в их роли могут выступать металлические трубопроводы, через которые протекает какая-нибудь негорючая жидкость, обсадные трубы артезианских колодцев.

В случае если вы решите использовать исключительно естественный заземлитель для безопасности своего дома, то протекающие по заземляющему проводу электрические токи не должны быть больше допустимых для каждого составного элемента заземляющего устройства.

www.eti.su


Смотрите также


loft абиссинка абиссинская скважина автономная канализация автономное водоснабжение автономное газоснабжение автономные газовые системы анализ воды арболит арболит достоинства арболит недостатки арболит своими руками артезианская скважина бетонный септик блок-хауз блок-хаус блокхауз блокхаус брама винтовой фундамент винтовые сваи выбор пиломатериалов выбор фундамента газгольдер Газобетон газобетон достоинства газобетон минусы газобетон недостатки газобетон это греющий пол деревянные окна деревянные фасады дизайн интерьеров дизайн хай-тек дома из арболита доркинг достоинства артезианских скважин евроокна. жб кольца забивная скважина звукоизоляция полов звукоизоляция помещений звукоизоляция своими руками звукоизоляция стен звукопоглощающие материалы имитация бревна имитация бруса интерьер в стиле хай-тек интерьеры инфильтратор инфильтратор для септика каменные стены канализация своими руками каркасник каркасный дом каркасный дом своими руками качество воды классицизм клеёный брус клееный брус клееный брус минусы клееный брус плюсы колодец куры брама видео лофт фото мансарда своими руками мансарда это минусы арболита мясные породы кур недостатки артезианских скважин недостатки клееного бруса объем инфильтратора огород в октябре окна ПВХ октябрьские работы в саду опилкобетон осенние работы в саду особенности стиля хай-тек отопление полами пиломатериалы плавающий пол Пластиковые окна плюсы газобетона поля фильтрации постройка фундамента пробковое покрытие пробковые полы размер септика расстояние от септика самодельный арболит самодельный септик санитарная зона септик септик из колец сибирская лиственница скважина скважина-игла сорта пиломатериалов стиль классицизм в интерьерах стиль лофт стиль хай-тек строим мансарду строительство фундамента таунхаус тепловой насос теплый пол типы фундаментов установить инфильтратор устройство каркаса устройство мансарды устройство септика устройство стен утепление утепление полов утепление стен утепление фасада фото интерьеров фундамент фундамент на сваях фундамент ошибки фундамент своими руками химический анализ воды хранение пиломатериалов электрический пол Электропол
 

ReadMeHouse
Энциклопедия строительства и ремонта