Натурные обследования состояния фундаментов производятся путем визуального и инструментального наблюдения, а также лабораторных испытаний материалов, взятых из конструкций, которые находились в эксплуатации.
Шурф, предназначенный для обследования фундамента и основания, разрабатывается в плане в виде прямоугольника, большая сторона (1,5—3 м) которого должна примыкать к фундаменту.
Размеры шурфа должны обеспечить свободную работу в нем людей. При проходке шурфа геологическое описание производится по его стенке, противолежащей фундаменту, где грунт обычно не нагружен. Со стороны, прилежащей к фундаменту, пробы грунта отбираются с разных горизонтов для определения загрязненности его агрессивными продуктами. Одновременно производится отбор проб грунтовой воды, если она окажется в шурфе. Отобранные пробы грунта (массой не менее 0,5 кг) до лабораторного химического анализа хранятся в стеклянных запарафинированных банках, а пробы воды — в стеклянных сосудах с притертыми пробками.
Прочность материала фундаментов [2, с. 14—20; 4; с. 89—91] определяется неразрушающими методами (акустическим, радиометрическим, магнитометрическим и др.) или приборами механического действия (шариковым молотком Физделя, эталонным молотком Кашкарова, пистолетом ЦНИИСКа и др.). При сплошном обследовании фундаментов, стен подвалов и подземных сооружений применяют ультразвуковой метод [2, с.106—108; 3]. Ширина раскрытия трещин на поверхности фиксируется отсчетным микроскопом МИР-2.
Методика обследования и проектирования оснований и фундаментов при капитальном ремонте, реконструкции и надстройке зданий
Ройтман А.Г., Смоленская Н.Г. Ремонт и реконструкция жилых и общественных зданий
Коновалов П.А. Основания и фундаменты реконструируемых зданий
Неразрушающие методы проверки позволяют произвести более точные измерения прочности материала фундаментов, а также обнаружить скрытые в них дефекты без снижения прочности конструкций. При акустическом методе, основанном на возбуждении упругих механических колебаний и регистрации условий их распространения в исследуемом материале, применяют ультразвуковые приборы УКБ-1, ДУК-20, УК-10П, УФ-90ПЦ и др. Радиометрические измерения интенсивности прохождения гамма-лучей в исследуемом материале и сравнения ее с интенсивностью в эталонных образцах осуществляют портативным переносным гамма-плотномером СГП. При магнитометрическом методе, основанном на возникновении магнитной анизотропии под действием приложенных напряжений, с помощью приборов ИТП-1 и ИПА определяют толщину защитного слоя в железобетонных фундаментах и расположение в них арматуры.
Механические методы контроля прочности позволяют произвести оценку только поверхностного слоя бетонных и железобетонных фундаментов. Эти методы менее точны, по сравнению с неразрушающими, поскольку прочность поверхности фундамента лишь приближенно может характеризовать прочность его в массиве.
Пробы материалов подземных конструкций в агрессивных средах подвергаются полному химическому анализу для определения процентного содержания окислов, ионов SO4" Cl" влажности, водородного показателя рН и др. Качественный и количественный состав продуктов коррозии устанавливается методами петрографического и электронно-структурного анализа в лабораторных условиях.
При обследовании свайных фундаментов определяют состояние свай, шаг и сечение свай, надежность заделки их в ростверк.
Наблюдения за уровнем грунтовых вод и их химическим составом следует проводить через сеть смотровых скважин для своевременного выявления утечки технологических растворов. Контрольные скважины должны быть оборудованы обсадными перфорированными трубами. При появлении воды в подвальных помещениях необходимо проверить состояние коммуникаций и качество гидроизоляции.
При обследовании конструкций фундаментов также выявляется коррозионное разрушение арматуры и закладных деталей. Характерным разрушением является уменьшение рабочего сечения арматуры или закладных деталей в результате перехода наружных слоев металла в продукты коррозии. Состояние арматуры устанавливается при удалении защитного слоя бетона. Обнажение арматуры происходит преимущественно в местах наибольшей подверженности ее коррозии, что выявляется по отслоению защитного слоя бетона, образованию в нем трещин и ржавых пятен. Сечение арматуры замеряется в месте ее наибольшего ослабления коррозией. При равномерной коррозии глубину поражений определяют измерением толщины слоя ржавчины, при язвенной — измерением глубины отдельных язв.
Фундаменты, выполненные из ненапряженного железобетона, площадь поперечного сечения арматуры в которых уменьшилась в результате коррозии на 10 % и более, должны быть усилены. Фундаменты с анкерными болтами заменяются или усиливаются в тех случаях, когда уменьшение поперечного сечения болта, работающего на растяжение на участке без резьбы, превышает 20 %, а болта, работающего на сжатие — 30 %.
Для определения степени коррозионного разрушения бетона (степени карбонизации, состава новообразований, структурных нарушений бетона) используют современные физико-химические методы. Исследование новообразований, возникших в бетоне под воздействием агрессивной среды, производится на отобранных из фундамента образцах с помощью дифференциально-термического, рентгено-структурного, электронно-микроскопического и химического методов. Глубину карбонизации бетона устанавливают по изменению величины рН.
Структурные изменения в бетоне определяют с помощью микроскопического метода, который позволяет: детально изучитьповерхность, выявить наличие крупных пор, размер и направление трещин и взаимное расположение и характер сцепления цементного камня и зерен заполнителя, состояние контакта между бетоном и арматурой.
Оценка состояния железобетонных фундаментов производится по десятибалльной системе. При этой оценке обращается внимание на наличие высолов, мокрых и масляных пятен, трещин, отколов защитного слоя бетона, следов ржавчины на поверхности бетона, а также на характер сцепления арматуры с бетоном, выпучивание стержней арматуры, глубину коррозии, структуру бетона, степень разрушения закладных деталей и защитных покрытий.
xn--h1aleim.xn--p1ai
Различного рода дефекты оснований и фундаментов могут возникать как во время строительства, так и при эксплуатации зданий и сооружений, если причины, приведшие к их развитию, не были своевременно выявлены и устранены.
В отличие от наземных конструкций, подземная часть – основания и фундаменты, всегда остаются скрытыми и недоступными для визуальных наблюдений, фиксации возможных изменений, оценки физических и других характеристик в процессе длительной эксплуатации сооружений.
В связи с этим сплошь и рядом их обследованию зачастую уделяется недостаточное внимание, тогда как наиболее серьезные деформации любого здания и сооружения (вплоть до их разрушения) связаны именно с дефектами и повреждениями грунтов оснований и фундаментов, а уже далее наземных конструкций (стен, колонн, перекрытий и др.).
Наиболее серьезные деформации зданий и сооружений связаны именно с дефектами грунтов оснований и фундаментов!
Не стоит также забывать, что при возведении объекта стоимость фундаментов составляет в среднем около 15-25%, а при их усилении данная цифра может возрастать и до 50%, так как необходимо выполнять сложные, трудоемкие и часто немеханизированные работы в ограниченном пространстве существующих конструкций.
Поэтому обследование грунтов оснований и фундаментов является наиболее важной частью обследовательских работ, особенно при реконструкции зданий и сооружений (надстройка дополнительных этажей, увеличение нагрузки на перекрытия и пр.).
Рассмотрим обследование оснований и фундаментов более подробно. Данный процесс принято разделять на несколько этапов.
1) Подготовительный этап
Включает в себя изучение проектной и эксплуатационной документации по объекту, материалов инженерно-геологических и гидрогеологических изысканий, журналов наблюдений за осадками, возможными кренами, деформацией фундаментов и др.
2) Натурный (полевой) этап
а) Обследование окружающей местности и наземных конструкций обследуемого здания или сооружения
Исследование прилегающей территории может сказать о причинах, а осмотр конструкции - поможет выявить характер деформации.
б) Экспертиза фундаментов
Обследование фундаментов производится из шурфов, число и размер которых определяются размерами и конфигурацией объекта, грунтовыми условиями и целями обследования. Шурфы отрываются рядом с обследуемыми фундаментами на глубину ниже уровня подошвы на 0,5 м. Если здание с подвалом, то шурфы закладывают, как правило, внутри здания с целью уменьшения объема земляных работ.
В открытых шурфах уточняют тип фундамента, его форму, размеры в плане, глубину заложения. Одновременно выявляются выполненные ранее подводки и усиления, дефекты и повреждения, определяются прочность тела фундамента, наличие гидроизоляции.
в) Обследование грунтов основания
Обследование грунтов оснований производится в тех же шурфах, которые служат для обследования фундаментов.
Для инженерно-геологической оценки грунтов из шурфов назначаются разведочные скважины, число которых определяется размерами и конфигурацией обследуемого объекта.
В скважинах выполняется отбор образцов грунта и грунтовых вод для последующего определения их физико-механических и химических характеристик. Также выполняются гидрогеологические исследования: определяются глубина залегания и мощность водоносных пластов, проводятся наблюдения за колебаниями уровня грунтовых вод
3) Камеральный этап
На данном этапе выполняется окончательная обработка и систематизация полученной в процессе обследования информации:
etalon-rk.ru
* Данный материал старше двух лет. Вы можете уточнить у автора степень его актуальности.
Обследование оснований и фундаментов является наиболее сложным и ответственным видом работ ввиду многообразия скрытых факторов, влияющих на них, а также потому, что надежность фундаментов во многом определяет состояние наземных конструкций. Обследование оснований и фундаментов включает следующие этапы работ:подготовительный, в котором изучается имеющаяся про- ектно-изыскательская документация, и уточняются задачи обследования;натурный (полевой), предназначенный для получения или уточнения физико-механических свойств оснований и конструкций фундаментов и характеристик грунтовых вод;лабораторный, необходимый для получения истинных характеристик свойств оснований и фундаментов;
камеральный, предназначенный для определения состава мероприятий, обеспечивающих требуемые эксплуатационные свойства оснований и фундаментов.В состав работ подготовительного этапа входит изучение: проектной документации; материалов выполнявшихся ранее инженерно-геологических и гидрогеологических обследований; журналов наблюдений за осадками, кренами, трещинами, прогибами и деформациями фундаментов; инженерных мероприятий, проводившихся в пределах площадки или вблизи нее. Во время подготовительного этапа осуществляется наружный осмотр здания для установления общего состояния конструкций, зоны наибольших деформаций и повреждений конструктивных элементов, намечаются места выработок, вскрытий фундаментов, места установки геодезических знаков и реперов.
При обследовании оснований — грунтов, залегающих под фундаментами и воспринимающими от них нагрузку, необходимо выявить характер грунтов, степень их пучинистости или просадочности, глубину промерзания и уровень грунтовых вод. Для этого отрывают шурфы и берут пробы грунта для лабораторных исследований. После отрывки шурфов выполняется обследование технического состояния конструкций фундаментов, при котором фиксируется наличие и состояние гидроизоляции, выявляются трещины, расслоения, поверхностные разрушения, определяются геометрические размеры конструкций, отбираются образцы материалов для физико-механических и химических лабораторных испытаний. При обследовании выполняется инструментальноеопределение физико-механических свойств материалов фундамента и деформаций надземных конструкций. По результатам натурных исследований составляют ведомости дефектов и повреждений фундаментов.
Испытание отобранных образцов материалов в лабораторных условиях проводится с целью установления фактических физико-технических характеристик грунтов основания и материалов конструкций фундаментов. Камеральные работы включают обобщение результатов обследований, выполнение расчетов по несущей способности оснований и фундаментов, анализу агрессивных внешних воздействий. По результатам сравнения фактических или проектируемых нагрузок от здания и несущей способности оснований и фундаментов делаются выводы по обеспечению требуемых эксплуатационных характеристик и в случае необходимости разрабатываются мероприятия по усилению оснований и конструкций. На основании выполненных расчетов составляется заключение о техническом состоянии конструкций фундаментов и их несущей способности.
Инженерно-геологическое обследование грунтов основания проводится посредством бурения обследуемого участка. В результате устанавливается последовательность грунтовых пластов, вклинивание пластов и их распространение на участке. При бурении выявляется уровень грунтовых вод, водовмещающие породы и определяют водоупоры, направление потока грунтовых вод, а также характеристики геологических слоев. Бурение проводят механическими или ручными буровыми установками. Диаметр скважин составляет 89-127 мм. Количество скважин определяют в каждом конкретном случае в зависимости от площади застройки, конфигурации здания, нагрузок на фундаменты и т.д. Оценка физико-механических свойств фундаментов заключается в определении их однородности, плотности, массивности и прочности. Если требуется установить конструкцию фундамента, то проводится контрольное зондирование материала шлямбуром или электродрелью диаметром 8—16 мм. Зондирование проводится выборочно. При этом особое внимание необходимо обращать на облегченные и смешанные участки фундамента. Прочность материала фундамента определяют склерометрическими методами. Сплошное обследование фундаментов и стен подвалов осуществляют ультразвуковыми методами.
В том случае, когда прочность является решающей при определении возможности дополнительной нагрузки, из фундамента отбираются образцы, испытываемые затем в лаборатории на прочность на прессах. Объем выборки определяется следующим образом. Из разных участков фундаментов выбираются 8—12 кирпичей или 5 образцов бутового камня с минимальной стороной20 см. Для бетонных фундаментов берется 5 образцов кернов диаметром10 сми длиной12 см. Образцы кладочного раствора должны быть такими, чтобы их можно было сложить в 5 кубиков размером 7x7x7 или 4x4x4 см. При обследовании фундаментов обязательно определение влажности материалов конструкций, наличия и состояния гидроизоляции, особенно при неглубоком залегании грунтовых вод. Для установления причин возникновение дефектов оснований и фундаментов вначале производится визуальное исследование поврежденных участков: выявляется наличие и направления развития трещин, определяется ширина и глубина их развития, наличие расслоений, разрушение поверхности фундаментов и т.п.
Внешний вид и характер трещин в фундаментах и стенах здания позволяют достаточно точно выяснить природу их возникновения. К наиболее распространенным дефектам относятся: прогиб здания, возникающий в том случае, если под средней частью фундамента по сравнению с крайними грунт более слабый. В этом случае стена работает на изгиб как балка на двух опорах. При этом наибольшее растягивающее усилие возникает в нижней части стены, что определяет характер трещин: наибольшая ширина их раскрытия в нижней части стены. По высоте здания наблюдается уменьшение ширины раскрытия трещин и участка стены, где они выявляются . Как правило, трещины «угасают» к подоконникам первого (реже второго) этажа; выгиб здания, наблюдаемый в том случае, если наиболее прочный участок расположен в центральной части стены. В этом случае стена работает как двухконсольная балка на изгиб. Наибольшие растягивающие усилия возникают в верхней части здания над краем ослабленного или более прочного участка. Характер трещин на участке стены, имеющей выгиб, представляется в виде треугольника с вершиной в нижней части. Наибольшая ширина раскрытия трещин и их количество наблюдаются в верхней части здания, у нижней части стены характеристики трещин уменьшаются. Следует иметь в виду, что выгиб стены здания значительно опаснее прогиба, так как при последнем здание не теряет общей связи и не разваливается. Для зданий старой постройки выгиб может быть вызван перегрузкой продольных стен наиболее тяжелыми торцевыми (часто глухими) стенами или устройством арочных проездов у торцов здания.
Дата редакции: 06.05.2014
ceur.ru
ReadMeHouse
Энциклопедия строительства и ремонта