• Войти
  • Регистрация
 

Фундаменты глубокого заложения: кессоны. Кессонный фундамент


Кессонные фундаменты - Фундаменты глубокого заложения

Кессонные фундаменты

Кессонный способ работы связан с использованием сжатого воздуха. Обычно основоположником кессонных ф) ндаментов

считают французского инженера Триже, хотя первый его кессон еще не был похож на современный. В 1841 г. Триже опускал стальные трубы диамет-: ром 1,03 м через водоносный слой для разработки каменноугольных копей в долине Луары. Труба на глубину 15 м опускалась по принципу опускного колодца с водоотливом. Дальнейшее погружение трубы этим способом не удавалось, и Триже применил сжатый воздух, превратив опускной колодец в кессон. Конструкция кессона Триже показана на рис. 6. Вода из шахты вытеснялась сжатым воздухом.

Рис. 1. Кессон Триже: 1 — шахта; 2 — воздушный шлюз; 3 и 4 — герметические двери; 5 — воздухопровод для сжатого воздуха; 6 — водоотводная труба

В оболочку был встроен «воздушный шлюз» с герметическими дверцами. Ниже шлюза находилась рабочая камера или шахта. Принцип работы заключался в следующем. Регулировочным краном воздухопровода давление воздуха внутри шлюза уравнивали с наружным. Когда давление воздуха было равно атмосферному, открывали дверь и входили в шлюз. А затем, закрыв верхнюю дверь и кран, соединяющий внутреннее пространство шлюза с атмосферой, открывали кран, при помощи которого шлюз сообщался

Ы с шахтой. Когда давление воздуха сравнивалось с давлением в шахте, открывали нижнюю дверь, и из шлюза переходили в шахту. Выход из шахты через шлюз наружу происходил в обратном порядке. Рабочие опускались в шахту и подрывали грунт под трубой. Вырытый грунт накладывали в бадьи, которые поднимали в шлюз, а из шлюза грунт перемещали наружу. Применяя этот способ, Триже опустил трубу еще на 6 м.

Такой же способ повторил английский инженер Брюнель при постройке двух мостов, где опускались цилиндры диаметром 11 м и высотой 30 м. Аналогичный способ был применен в 1857 г. при строительстве моста через р. Тиса в Венгрии для опускания стальной трубы диаметром 3 м. При строительстве этого моста были внесены некоторые усовершенствования в конструкцию кессона.

В 1856—1858 гг. в России также был применен этот способ при строительстве моста через р. Неман в Ковно, р. Вислу з Варшаве, р. Двину и др.

Конструктивное оформление современного кессона было дано инж. Денисом в 1859 г. при устройстве фундаментов Киль-ского моста через р. Рейн.

Предложенный Денисом кессон представлял собой металлический ящик, перевернутый дном вверх, который служил рабочей камерой и был соединен с шахтными трубами и со шлюзом. Такая конструкция выгодно отличается от конструкции цилиндрического кессона, примененного Триже, так как сталь расходуется только для устройства рабочей камеры, а тело опоры устраивается из менее дефицитного материала — камня и бетона. Принцип применения сжатого воздуха в том и другом случае одинаков.

Первый кессон современного типа имел в плане размеры 7 X 24 и высоту 3,8 м. По мере опускания рабочей камеры возводилась кладка тела опоры. Эта же конструкция была успешно применена при строительстве опор мостов в Швейцарии и через р. Преголя в Прибалтике. Однако более простые по форме цилиндрические кессоны были вытеснены не скоро. В России кессоны современного типа впервые применены в 1871 г. при строительстве моста через р. Днепр.

В России также широко применялись бетонные кессоны. Только на строительстве Восточно-Китайской железной дороги построено более 100 мостов на таких кессонах. Бетонные кессоны нашли применение и в 1910—1912 гг. при строительстве больших мостов через pp. Днепр, Дон и др.

Кессонный способ сооружения фундаментов значительно расширил возможности строителей. Там, где опускные колодцы не могли применяться по геологическим условиям (большие валуны, скальные прослойки, грунтовая вода и т.д.), их заменяли кессонами.

В практике мостостроения, особенно в Америке, применялись деревянные кессоны. Например, опоры Бруклинского висячего моста в НькР-йорке с главным пролетом 487 м, построенного в 1870—1883 гг., сооружены на деревянных кессонах размером 32,2 X 52,5 м (площадь их равна 1592 м2). Вероятно, это самые большие кессоны в практике строительства мостов. Расход древесины на один кессон составил 3140 м3, а металла — 250 т. Глубина погружения кессонов — 24 м ниже уровня грунта. Большие кессоны из дерева в США применяли также при строительстве ряда других мостов, в частности при строительстве арочного моста в Сент-Луисе в 1870 г. (25 X 22,1 м), а также в 1911 г. на строительстве Ново-Квебекского моста (16,9 X 55 м) и др. Эти кессоны поражают своими грандиозными размерами, но не совершенством конструкций. Характерной особенностью строительства кессонных фундаментов является то, что размеры кессонов с развитием уровня техники сильно уменьшились.

Деревянные кессоны нашли применение и в России при строительстве опор мостов на сибирских железных дорогах.

При строительстве опор мостов на кессонных фундаментах иногда происходили неожиданные случаи. При строительстве кессонных фундаментов опор моста в Нью-Йорке в 1917 г. под фундамент одной из опор предполагалось опустить три кессона до верха скальных пород. При опускании третьего кессона до проектной отметки была обнаружена широкая расщелина в скале, заполненная мягкой породой. Строители приняли решение перекрыть расщелину железобетонными арками и консольными балками пролетами 18 м, которые опирались на два соседних кессона. Третий кессон был поставлен на это перекрытие. Устройство железобетонных перекрытий производилось на глубине 21,35 м ниже горизонта воды под сжатым воздухом.

Еще более неожиданный случай имел место при строительстве фундамента автодорожного моста в Нью-Уэльсе в Австралии, где пришлось опустить кессон на глубину 75 м от уровня воды. При опускании кессона, когда он был погружен на глубину 15 м в грунт, а кладка была выведена на высоту 39 м, внезапно кессон опустился на 18 м. При этом верх кладки оказался на 14 м ниже поверхности воды, которая в этом месте достигала 35 м. Было решено опустить второй кессон на первый и объединить их. После этого кладка была выведена на 60 м. Колодец сел еще на 7 м. В процессе дальнейшего опускания также имело место скачкообразное опускание кессона на 8 м.

В практике отечественного мостостроения также были аварийные случаи при работе с кессонами. При строительстве моста через р. Днепр в 1871 г. один из кессонов опрокинулся и затонул. Чтобы опустить новый кессон, пришлось затонувший разрубить на части и извлечь. Были также неприятности при строительстве опор одного железнодорожного моста через р. Днепр: из-за неоднородности основания кессона произошел разрыв кладки тела одной из опор. Исправление разрыва кладки происходило в трудных условиях в течение 4 месяцев при круглосуточной аварийной работе. Строительство одной опоры заняло 5 лет.

В СССР кессоны широко применяли при строительстве мостов как на железных, так и на автомобильных дорогах. Наиболее современные методы нашли применение в строительстве новых московских мостов, построенных в 1936—1938 гг.

Наиболее сложные кессонные работы приходилось вести при строительстве Краснохолмского моста в Москве. Кессоны этого моста по своим размерам и глубине опускания относятся к категории выдающихся сооружений. Дно русла реки сложено поверху культурным слоем, а затем следует песок с гравием, глины и суглинки. На глубине 27—30 ж залегает известняк. Под каждую опору было опущено по два железобетонных кессона размером 17,5 X 35 ж с расстоянием между ними 4,5 м. Кессоны имели ромбическую форму. Наибольшая глубина опускания кессона — 34 м. На этом мосту широко применили гидромеханизацию, что значительно повысило темп работ. Это было новинкой в мостостроении. При обычном способе ведения работы восемь кессонщиков выдавали в смену 30 ж3 грунта, а с применением гидромеханизации 200 ж3. Благодаря хорошей организации работа по устройству фундаментов закончена в течение 1 года.

Кессонные фундаменты применили также на строительстве ряда других московских мостов.

Гидромеханизация позволяет вести работу без людей в камере или при небольшом количестве людей. Первый способ получил название автоматического, или слепого. Этот способ испытан в 1937 г. на строительстве Б. Каменного моста, а потом на Наводницком мосту в Киеве в 1939—1940 гг.

В послевоенный период большой вклад в усовершенствование конструкций опор на кессонных фундаментах внесли мостостроители Прибалтики [43]. Ими предложены и внедрены столбчатые опоры на кессонах-оболочках из тонкостенных железобетонных элементов весом 200 т и более.

Конструкция опор на кессонах-оболочках показана на рис. 2. Опора состоит из двух кессонов-оболочек, железобетонного ростверка и тела опоры. Кессоны-оболочки имеют в нижней части горизонтальные перегородки для размещения на них шахтных труб с кессонными аппаратами. Диаметры оболочек доходили до 6,3 м при толщине стенки 15 см. Оболочки изготовляли на стенде. Транспортирование и опускание оболочек производили двумя плавучими шевр-кранами грузоподъемностью до 90—100 т. ичгптпв.прнными гилями стпоителей. После опускания

Кессонов-оболочек до проектной глубины и заполнения внутренней полости бетонной смесью на головы оболочек устанавливали железобетонный ящик-ростверк с несколькими отсеками. Ящик-ростверк служил одновременно опалубкой ростверка. При заполнении ящика-ростверка бетонной смесью его объединяли с оболочками при помощи арматурных каркасов. Для бетонирования ростверка, верх которого находился ниже уровня воды, применяли водонепроницаемые инвентарные перемычки. Над ростверком обычным путем возводили тело опоры. За последние несколько лет построено 15 опор на кессонах-оболочках.

На одном мосту две опоры на кессонах-оболочках построены в трудных геологических условиях: дно русла реки на глубину 3—4 м состояло из песков с содержанием крупных и мелких валунов, а ниже залегал мощный пласт песчаника. Глубина воды составляла от 3,5 до 5 м, а скорость течения реки доходила до 5 м/сек. Возведение опор в .двойном шпунтовом ограждении, рекомендованное в проекте моста, оказалось невыполнимым по геологическим условиям. Поэтому проект моста был пересмотрен, и опоры были построены на кессонах-оболочках. Кессоны-оболочки имели диаметр 5 м на нижнем участке высотой 3 – 4,8 м выше его. Расстояние между оболочками — около 9 м. При опускании оболочек на одной опоре встречались препятствия в виде сплотки деревянных свай и двухтавровых балок. Оболочки были опущены в песчаник на глубину 2,7 м. Все работы по возведению одной оболочки заняли 32 дня.

Особенность опор на кессонах-оболочках — это замена массивных кессонов двумя облегченными железобетонными оболочками, широкое применение сборных элементов с большим монтажным весом и индустриальный метод строительства.

Однако кессонные фундаменты в настоящее время полностью вытесняются другими видами фундаментов, глубокого заложения.

Рис. 2. Опора на кессонах-оболочках: а — незаконченная; б — законченная

Читать далее:Выбор вида свай и оболочекПроектирование фундаментов глубокого заложенияКонструкция винтовых сваиБурение скважин станками роторного буренияБурение скважин станками ударно-канатного буренияСпособы бурения скважинВиды буровых свайПримеры строительства фундаментов на железобетонных оболочкахУстройство уширенного основания оболочекБетонирование полости оболочек

stroy-server.ru

Массивные фундаменты глубокого заложения из опускных колодцев и кессонов

Конструкции и область применения опускных колодцев и кессонов

Опускной колодец представляет собой открытую сверху и снизу железобетонную (реже стальную и бетонную) конструкцию (рис. 9.1), стены которой в нижней части имеют заострения (консоли), обычно усиленные металлом (ножи). Опускные колодцы погружаются в грунт под действием собственного веса по мере разработки и удаления грунта, расположенного в полости колодца и ниже его ножа.

опускной колодецРис. 9.1. Опускной колодец а — погружение колодца.; б — фундамент в виде опускного колодца; 1 — консоли; 2 — стенки колодца; 3 — надфундаментная часть опоры; 4 — железобетонная плита; 5 — бетон, уложенный насухо; 6 — подводный бетон; 7 — прочный грунт; 8 — слабый грунт

Стены колодцев либо сооружают сразу на полную высоту, либо наращивают по мере погружения колодцев в грунт (рис. 9.1,а).

Погружение опускных колодцев в грунт производят с откачкой или без откачки воды из их полости.

После достижения опускным колодцем проектной глубины заложения фундамента полость колодца целиком (рис. 9.1,6) или частично заполняют бетонной смесью сначала подводным способом, а затем насухо. В верхней части колодца сооружают распределительную железобетонную плиту, на которой впоследствии ведут кладку надфундаментной части опоры; в некоторых случаях такую плиту не делают.

Опускные колодцы применяют в случаях расположения грунтов с достаточной несущей способностью на больших (более 5—8 м) глубинах, когда сооружение фундаментов в открытых котлованах из-за сложности крепления их стен экономически нецелесообразно или технически неосуществимо. Так как в подобных случаях кроме опускных колодцев можно применять фундаменты из свай или оболочек, выбор типа фундамента производят на основе технико-экономического сравнения вариантов. Достоинством фундаментов из опускных колодцев является возможность их погружения без использования сложного технологического оборудования. Недостатками их являются большой объем кладки и значительные трудности, возникающие при встрече колодцев в водонасыщенных грунтах с препятствиями в виде крупных валунов, скальных прослоек, топляков и т. п. Устранение таких препятствий возможно лишь после откачки воды из колодцев, что при водонасыщенных грунтах не всегда удается сделать. Трудности, связанные с необходимостью осушения колодца, возникают и при посадке его на скальный грунт, поверхность которого не бывает строго горизонтальной и нуждается в планировке для возможности опирания на него колодца по всему периметру.

кессонРис 9.2. Кессон а — погружение кессона; б — кессонный фундамент; 1 — консоль; 2 — надкессонная кладка; 3 — трубы для сжатого воздуха; 4 — компрессорная станция; 5 — центральная шлюзовая камера; 6 — прикамерки; 7 — шахтные трубы; 8 — потолок кессона; 9 — нож; 10 — рабочая камера кессона; 11 — кладка надфундаментной части опоры; 12—бетон заполнения шахты; 13 — бетон заполнения рабочей камеры; 14 — прочный грунт; 15 — слабый грунт

Указанные трудности преодолеваются, если фундамент сооружают с применением кессона (рис. 9.2). Кессон (рис. 9.2,а) представляет собой открытую снизу железобетонную или стальную конструкцию, состоящую из потолка и боковых стен. Толщина стен кессона книзу уменьшается и они заканчиваются консолью со стальным ножом. Полость в нижней части кессона называют рабочей камерой. В ней производят разработку грунта, по мере которой кессон опускается под действием собственного веса, а также веса надкессонной кладки, возводимой из бетона над потолком в процессе погружения кессона в грунт. Подачей в рабочую камеру сжатого воздуха обеспечивают отжатие из нее воды, что позволяет вести разработку грунта насухо.

Сжатый воздух вырабатывается компрессорной станцией и подается по трубам как в рабочую камеру кессона, так и в шлюзовой аппарат. Последний состоит из центральной шлюзовой камеры и двух прикамерков — один для рабочих, второй для материалов. Шлюзовой аппарат устанавливают на две шахтные трубы, которые собирают из отдельных металлических звеньев и используют для подъема и спуска рабочих, а также вертикального транспорта материалов и грунта.

Спуск рабочих в камеру кессона производят в следующем порядке. Из пассажирского прикамерка выпускают сжатый воздух, что позволяет открыть вовнутрь наружную дверь прикамерка, в которую входят рабочие. Дверь закрывают и в прикамерок из центральной шлюзовой камеры подают сжатый воздух. Когда давление воздуха в прикамерке станет равным давлению воздуха в центральной шлюзовой камере, открывают дверь между ними и рабочие переходят в эту камеру, а потом по металлической  лестнице,   установленной  в   шахтной  трубе, спускаются в камеру кессона. Подъем рабочих в центральную шлюзовую камеру и выход их наружу осуществляют в обратном порядке.

Изменение давления от нормального к повышенному (процесс шлюзования) и от повышенного к нормальному (процесс вышлюзовывания) в пассажирском прикамерке необходимо производить так, чтобы рабочие могли постепенно приспособиться к новым условиям. Время, потребное для шлюзования и вышлюзовывания, тем больше, чем выше давление воздуха в кессоне.

Для возможности отжатия воды из рабочей камеры кессона избыточное (сверх нормального) давление воздуха в ней должно несколько превышать гидростатическое давление на уровне низа ножа кессона.

Наибольшее избыточное давление, при котором разрешается работать людям в кессоне, равно 400 кПа. Это определяет максимальную глубину погружения кессона от уровня воды в 40 м.

После достижения проектной глубины заложения фундамента камеру кессона заполняют бетонной смесью (рис. 9.2,6). Затем демонтируют шлюзовой аппарат и шахтные трубы; вертикальную шахту заполняют бетонной смесью. В результате получается массивный фундамент глубокого заложения, на котором возводят кладку надфундаментной части опоры.

Преимущество кессонов по сравнению с другими типами фундаментов заключается в том, что они позволяют возводить фундамент глубокого заложения в любых гидрогеологических условиях. В рабочей камере кессона возможно освидетельствование и даже испытание грунта основания, что весьма ценно.

Кессоны имеют и существенные недостатки, к которым в первую очередь следует отнести вредное воздействие сжатого воздуха на организм рабочих, большой объем бетонной кладки в массивной конструкции фундамента, неиндустриальность конструкции и высокую стоимость кессонных работ. Если под избыточным давлением до 175 кПа разрешается находиться не свыше 7 ч в сутки, то под давлением в 350—400 кПа максимальное время пребывания составляет только 2 ч, из которых 1 ч затрачивается на процессы шлюзования и вышлюзовывания и только 1 ч используется на полезную работу. В связи с этим стоимость кессонных работ резко возрастает с увеличением глубины погружения кессона в грунт.

www.stroitelstvo-new.ru

Фундаменты глубокого заложения: кессоны

В сильно обводненных грунтах, содержащих прослойки скальных пород или твердых включений (валуны, погребенную древесину и т.д.) погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твердых включений.

В этом случае используется кессонный метод устройства фундаментов глубокого заложения, который был предложен во Франции в середине 19в.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведется насухо без водоотлива.

 

Метод является более дорогостоящим и сложным, поскольку требует специального оборудования. Кроме того, этот способ связан с пребыванием людей в зоне повышенного давления воздуха, что значительно сокращает продолжительность рабочих смен (до 2 часов при 350…400кПа(max)) при максимальной глубине 35-40м.

В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.

Кессонная камера, высота которой по санитарным нормам принимается не менее 2,2 м, выполняется из ж/б и состоит из потолка и стен, называемых консолями.

Способ погружения кессона аналогичен опускному колодцу. Глубину погружения кессона и его внешние размеры определяют так же, как и для опускных колодцев.

Шлюзовой аппарат, соединенный с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее.

Рабочий процесс. Рабочий входит в прикамерок шлюза, где давление постепенно повышается до имеющегося в рабочей камере. На этот процесс затрачивается от 5 до 15 мин., что необходимо для адаптации организма человека, после чего по шахтной трубе рабочий опускается в рабочую камеру кессона. Выход из рабочей камеры кессона осуществляется в обратной последовательности, но при этом на снижение давления воздуха в прикамерке шлюза до уровня атмосферного давления требуется 3-3,5 раза больше времени, чем вначале, т.к. быстрый переход от повышенного давления к атмосферному может быть причиной начала кессонной болезни.

Сжатый воздух в кессонную камеру начинают подавать не сразу, а как только ее нижняя часть при погружении достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия:

Где - избыточное (сверх атмосферного) давление воздуха, кПа;

- гидростатический напор на уровне банкетки ножа, м;

- удельный вес воды,

После опускания кессона на проектную глубину все специальное оборудование демонтируется, а рабочая камера заполняется бетоном.

Грунт в камере кессона разрабатывается или ручным или гидромеханическим способом.

Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханизмами выносится за ее пределы. Такой способ опускания кессона называется слепым.

 

№ 20 ЕМТИХАН БИЛЕТІ/ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

1. Закрепление грунтов: смолизация, глинизация и битумизация

Смолизация — нагнетание водного раствора карбамидной смолы с добавкой соляной кислоты,щавелевой кислоты или хлористого аммония. Применяется для закрепления, повышения прочности иводонепроницаемости мелкозернистых песчаных грунтов.

Глинизация служит для уменьшения фильтрационной способности трещиноватых скальных,кавернозных пород и гравелистых грунтов. При этом способе в трещины породы нагнетается под большимдавлением глинистая суспензия с добавкой небольшой дозы коагулянта.

битумизация. Её назначение — заделка наиболее крупных каверн, не поддающихсяцементации из-за большой скорости грунтового потока. Нагнетание горячего битума в полости и трещиныкавернозных пород производится через пробуренные скважины, оборудованные инъекторами. При холоднойбитумизации в грунт нагнетают тонкодисперсную битумную эмульсию. Способ применяется для оченьтонких трещин в скальных грунтах и закрепления песчаных грунтов.



infopedia.su

77

77. Фундаменты глубокого заложения: кессоны, глубокие опоры, сваи оболочки.

При залегании прочных грунтов на значительной глубине, когда устройство фундаментов в открытых котлованах становится труд­новыполнимым и экономически невыгодным, а применение свай не обеспечивает необходимой несущей способности, прибегают к устройству фундаментов глубокого заложения. Необходи­мость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения, например когда оно должно быть опущено на большую глубину (заглубленные и под­земные сооружения). К таким сооружениям относятся подземные гаражи и склады, емкости очистных, водопроводных и канализаци­онных сооружений, здания насосных станций, водозаборы, глубокие колодцы для зданий дробления руды, непрерывной разливки стали и многие другие.

В настоящее время в строительной практике применяют следу­ющие виды фундаментов глубокого заложения: опускные колодцы, кессоны, тонкостенные оболочки, буровые опоры и фундаменты, возводимые методом «стена в грунте».

Кессоны

Кессонный метод устройства фундаментов глубокого заложения был предложен во Франции в середине XIX в. для строительства в сильно обводненных грунтах, содержащих прослойки скальных пород или твердые включения (валуны, погребенную древесину и т. д.). В этих условиях погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грун­та под водой невозможна из-за наличия в грунте твердых включе­ний.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давле-

23 Механика грунтов

нием нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не по­зволяет ей проникать в ра­бочую камеру, благодаря че­му разработка грунта ведет­ся насухо без водоотлива.

Рис. 13.9. Схема устройства кессона:

а — для заглубленного помещения; б — для глу­бокого фундамента; 1 — кессонная камера; 2 — гидроизоляция, 3 — надкессонное строение; 4 — шлюзовой аппарат; 5 — шахтная труба

^ способ устройства фунда­ментов и подземных соору-

, , жений является более доро-

а — для заглубленного помещения; б — для глу-

бокого фундамента; 1 — кессонная камера; 2 — ГОСТОЯЩИМ И СЛОЖНЫМ, ПО-

гидроизоляция, 3 — надкессонное строение; 4 — скольку требует специаль­

По сравнению с опуск­ными колодцами кессонный

ного оборудования (комп­рессоры, шлюзовые аппара-

ты, шахтные трубы и т. д.). Кроме того, этот способ связан с пребы­ванием людей в зоне повышенного давления воздуха, уравновеши­вающего гидростатический напор воды, что приводит к снижению производительности труда, значительно сокращает продолжитель­ность рабочих смен (до 2 ч при избыточном давлении 350...400 кПа) и ограничивает глубину погружения кессонов до 35...40 м ниже уровня подземных вод, поскольку максимальное добавочное давле­ние, которое может выдержать человек, составляет 400 кПа.

В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.

Конструкция кессонов и оборудование для их опускания. Кессон состоит из двух основных частей: кессонной камеры и надкессон- ного строения (рис. 13.9).

Кессонная камера, высота которой по санитарным нормам при­нимается не менее 2,2 м, выполняется из железобетона и состоит из потолка и стен, называемых консолями. Консоли камеры с внутрен­ней стороны имеют наклон и заканчиваются ножом. Толщина консолей в месте примыкания к потолку составляет 1,5...2 м, шири­на банкетки принимается равной 25 см. Конструкция ножа кессона такая же, как и опускного колодца.

Для изготовления кессонных камер применяют бетон класса не менее В35, а их армирование ведется на усилия, возникающие в процессе возведения кессона. При бетонировании кессонной каме­ры в ее потолке оставляют отверстия для установки шахтной тру­бы, труб сжатого воздуха и воды, а также подводки электроэнергии.

Надкессонное строение в зависимости от назначения кессона выполняется либо как колодец с железобетонными стенками (под заглубленные помещения), либо в виде сплошного массива из моно­литного бетона или железобетона (для фундаментов глубокого заложения). Если надкессонное строение выполняется под заглуб- 354

ленное помещение, то на его наружные стены наносится гидроизо­ляция для защиты кессона от проникновения в него воды.

Как и в случае опускных колодцев, надкессонное строение воз­водят или сразу на всю проектную высоту, или же ярусами по мере погружения.

Главными элементами оборудования для опускания кессонов являются шлюзовые аппараты, шахтные трубы и компрессорная станция.

Шлюзовой аппарат, соединенный с кессонной камерой шахт­ными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее. Процесс шлюзования и вышлюзовывания рабочих происходит следующим образом. Рабочий входит в пассажирский прикамерок шлюза, где давление постепенно повышается от атмосферного до имеющегося в рабочей камере. На этот процесс затрачивается, как правило, от 5 до 15 мин, что необходимо для адаптации организма человека к условиям повышенного давления, после чего по шахтной трубе рабочий опускается в рабочую камеру кессона. Выход из рабочей камеры кессона осуществляется в обратной последовательности, но при этом на снижение давления воздуха в пассажирском прикамерке шлюза до уровня атмосферного требуется в 3...3,5 раза больше времени, чем на переход от атмосферного давления к повышенному. Здесь необходимо проявлять особую осторожность, поскольку бы­стрый переход от повышенного давления к атмосферному может быть причиной так называемой кессонной болезни.

Для обеспечения нормальных условий работы рабочая камера и шлюзовой аппарат обеспечиваются электроосвещением, телефон­ной связью, системой звуковых и световых сигналов.

Производство кессонных работ. Последовательность производст­ва работ при строительстве кессонов такая же, как и при строитель­стве опускных колодцев.

Сначала на спланированной поверхности грунта или на дне пионерного котлована возводится кессонная камера, на которой монтируются шлюзовой аппарат и шахтные трубы. Одновременно вблизи кессона сооружается компрессорная станция и монтируется обрудование для подачи в кессон сжатого воздуха.

После того как бетон кессонной камеры приобретет проектную прочность, ее снимают с подкладок и начинают погружение. Сжа­тый воздух начинают подавать в кессонную камеру, как только ее нижняя часть достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия

Рь>Н„у„, (13.6)

гдеРь — избыточное (сверх атмосферного) давление воздуха, кПа;

— гидростатический напор на уровне банкетки ножа, м; у* — Удельный вес воды, кН/м3.

По мере погружения кессона в грунт наращивают шахтные трубы, если это необходимо, и возводят надкессонную часть соору­жения.

После опускания кессона на проектную глубину все специальное оборудование демонтируется, а рабочая камера заполняется бето­ном.

Грунт в камере кессона разрабатывается ручным или гидромеха­ническим способом.

Ручная разработка грунта применяется при погружении кессонов в породы, не поддающиеся размыву (плотные глинистые, скальные грунты и т. п.). В этих случаях грунт разрабатывается ручным механизированным инструментом (отбойные молотки, пневмобу­ры), а разрушение скальных пород и дробление валунов произво­дится взрывным способом мелкими шпуровыми зарядами. Разра­ботанный грунт грузится в бадьи, подвешенные к смонтированному на потолке камеры монорельсу, и подается к шахтному отверстию.

При разработке грунта следят за равномерным погружением кессона. Если замечают перекосы и крены, то замедляют разработ­ку грунта с одной стороны кессона и усиливают с противополож­ной.

Если после разработки грунта кессон не опускается, то его либо пригружают, либо применяют форсированную посадку. Форсиро­ванная посадка достигается снижением давления воздуха в рабочей камере, вследствие чего падает направленное вверх давление на ее потолок, сопротивление кессона погружению в грунт резко умень­шается и он быстро опускается на глубину выработки.

Правилами производства кессонных работ форсированную по­садку кессона разрешается производить на глубину не более 0,5 м при снижении давления воздуха не более чем на 50%. Пребы­вание людей в кессоне при форсированной посадке запрещается.

Если существует опасность самопроизвольного опускания кес­сона (при слабых грунтах или значительном весе кессона), то под потолок его камеры подводят шпальные клетки. После того как опасность самопроизвольного опускания кессона минует, шпальные клетки разбирают.

Гидромеханическая разработка грунта применяется при погру­жении кессона в грунты, поддающиеся размыву (песчаные, супесча­ные, песчано-гравелистые). Разработка грунта производится гидро­мониторами, а разжиженная масса (пульпа) удаляется из камеры гидроэлеваторами или эжекторами.

Гидромониторы и гидроэлеваторы могут работать по заданной программе, что позволяет сократить до минимума число рабочих, находящихся в кессонной камере под давлением сжатого воздуха. Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханиз­мами выносится за ее пределы. Такой способ опускания кессонов называется слепым.

Тонкостенные оболочки из сборных железобетонных элементов индустриального изготовления начали широко применять при воз­ведении фундаментов глубокого заложения с появлением мощных вибропогружателей, позволяющих погружать в грунт элементы бо­льших размеров.

Тонкостенная оболочка представляет собой пустотелый цилиндр из обычного или предварительно напряженного железобетона.

Оболочки выпускаются секциями длиной от 6 до 12 м и наруж­ным диаметром от 1 до 3 м. Длина секций кратна 1 м, толщина стенок составляет 12 см. На рис. 13.10 в качестве примера показана секция оболочки диаметром 1,6 м.

На строительной площадке секции оболочки или предваритель­но укрупняются, или наращиваются в процессе погружения с помо-

щью специальных стыковых устройств. Анализ накоплен­ного опыта показал, что на­илучшими типами стыков яв­ляются сварной, применяе­мый для предварительной сборки на строительной пло­щадке, и фланцевый на бол­тах, используемый для нара­щивания оболочек в процессе погружения (рис. 13.11).

Рис. 13.11. Стыки секций оболочек:

а — сварной стык; б — фланцево-болтовой стык; 1 — стержень продольной арматуры; 2 — ребро; 3 — обечайка; 4 — сварной шов; 5 — стальной стержень; 6 — болт

Погружение оболочек в грунт осуществляется, как правило, вибропогружателя­ми. Для облегчения погруже­ния, а также для предотвра­щения разрушения оболочки при встрече с твердыми включениями конец нижней секции снабжается ножом.

Для повышения сопротивления оболочки действию значитель­ных по величине внешних усилий обычно ее полость после погруже­ния до заданной глубины заполняется бетоном. При погружении в песчаные грунты внизу оставляют уплотненное песчаное ядро высотой не менее 2 м (рис. 13.12, а). Благодаря этому сохраняется естественная плотность песчаного грунта в основании оболочки, что обеспечивает лучшее использование его несущей способности.

Заполнение оболочек бетоном значительно замедляет темпы производства работ и снижает процент сборности фундамента, особенно при оболочках большого диаметра. Чтобы снизить объем укладываемого бетона или вообще исключить производство бетон­ных работ на строительной площадке, разработаны конструкции оболочек с утолщенными до 16...20 см стенками (усиленные оболоч­ки). Усиленные оболочки обладают достаточной прочностью для их вибропогружения в труднопроходимые грунты, характеризуемые включениями галечника и валунов (что на практике создавало серьезные трудности при погружении обычных оболочек и не раз приводило к их разрушению), и не трубуют обязательного последу­ющего заполнения бетоном по крайней мере на полную высоту. Применение таких оболочек значительно сокращает объем бетон­ных работ, производимых на строительной площадке.

Разновидностью усиленных оболочек являются оболочки с несу­щей диафрагмой. Диафрагма устраивается в нижней секции оболоч­ки на высоте одного-двух ее диаметров и имеет центральное отвер­стие для извлечения грунта из ее полости при погружении (рис. 13.12, б). После посадки диафрагмы на грунт на последнем этапе погружения отверстие заливают бетоном. Такие оболочки предназ­начаются для фундаментов, устраиваемых в песчаных и песчано­гравийных грунтах без включения валунов.

Если оболочка погружается до скальных грунтов, то ее нижний ко­нец, как правило, заделывается в скалу. Для этого в скальной поро­де через оболочку бурят скважину диаметром, равным внутреннему диаметру оболочки, и после уста­новки арматурного каркаса скважи­ну и оболочку заливают бетоном (рис. 13.12, в).

В нескальных грунтах увеличение несущей способности оболочки по грунту достигается устройством внизу уширенной пяты. Полость для уширенной пяты делают либо раз- буриванием, либо камуфлетным взрывом с последующим заполнени­ем ее бетонной смесью (рис. 13.12, г). Практика показала, что устрой­ство уширений наиболее целесооб­разно в глинистых грунтах средней прочности.

Оболочки, заделанные в скалу или имеющие внизу уширение, об­ладают значительной несущей спо­собностью (10 МН и более), поэтому обязательно заполняются бетоном на всю высоту. Исключение состав­ляют только усиленные оболочки, где иногда можно ограничиться устройством только нижней бетон­ной пробки.

Рис. 13.12. Конструкция сборных желе­зобетонных оболочек:

а — оболочка с уплотненным песчаным ядром; б — усиленная оболочка с несу­щей диафрагмой; в — оболочка, заде­ланная в скалу; г — оболочка с уширенной пятой; 1 — оболочка; 2 — бетонное заполнение; 3 — нож; 4 — несущая диафрагма; 5 — арматурный каркас; 6 — буровая скважина в скаль­ной породе; 7 — уширенная пята

Тонкостенные оболочки из сбор­ных железобетонных элементов об­ладают рядом достоинств, позволя­ющих им во многих случаях успеш­но конкурировать с другими типами фундаментов глубокого зало­жения. Прежде всего надо отметить индустриальность их изготов­ления, высокую сборность и механизацию всех работ, что позволяет значительно сократить сроки строительства и уменьшить трудоем­кость возведения фундаментов. Кроме того, применение оболочек позволяет лучше использовать прочностные свойства материала фундамента. Так, если при опускных колодцах и кессонах прочност­ные свойства материала фундамента используются на 10... 15%, то в оболочках — на 40...60%. Особенно экономичными являются обо­лочки, заделанные основанием в скальные грунты, когда их матери­ал может быть использован практически полностью.

Наиболее рационально тонкостенные оболочки применять при больших вертикальных и горизонтальных нагрузках. Такие сочета­ния нагрузок наиболее характерны для мостов, гидротехнических и портовых сооружений.

Буровые опоры представляют собой бетонные столбы, которые возводят путем укладки бетонной смеси в предварительно пробу­ренные скважины. Укладка бетонной смеси производится под защи­той либо глинистого раствора, либо обсадных труб, извлекаемых при бетонировании.

Технология устройства буровых опор та же, что и буронабивных свай (см. § 11.1), т. е., по существу, они представляют собой буронабивные сваи большого диаметра (более 80 см).

Нижние концы буровых опор обязательно доводят до плотных грунтов, поэтому они работают как стойки. Иногда их делают с уширенной пятой. При необходимости буровые опоры армируют­ся, но, как правило, только на участках сопряжений со скальной породой и с ростверком.

Буровые опоры обладают значительной несущей способностью (10 МН и более) и рассчитываются как сваи-стойки, изготовленные в грунте.

352

studfiles.net

Опускные колодцы и кессоны - Фундаменты

Навигация:Главная → Все категории → Фундаменты

Опускные колодцы и кессоны Опускные колодцы и кессоны

Наиболее типичными представителями фундаментов глубокого заложения являются опускные колодцы и кессоны.

Опускной колодец представляет собой сборную или монолитную железобетонную конструкцию, которая может иметь прямоугольное или кольцевое очертание в плане (рис. 11.1). Тяжелые массивные опускные колодцы выполняют, как правило, в монолитном варианте (рис. 11.1, а), а облегченные — в виде сборных свай-оболочек (рис. 11.1, б).

Массивный опускной колодец погружается в грунт следующим образом. На поверхности основания возводят пустотелую нижнюю часть фундамента (рис. 11.1, в). Затем, используя землеройные механизмы, через вертикальную полость извлекают грунт. Под действием собственного веса колодец погружается (рис. 11.1, г). По мере опускания колодец можно наращивать, получая фундамент требуемой глубины. По достижении проектной отметки нижнюю часть колодца заполняют бетонной смесью, увеличивая площадь подошвы фундамента. При возведении канализационных насосных станций известны случаи погружения опускных колодцев диаметром до 70 м на глубину более 70 м.

Рис. 11.1. Опускные колодцы:а – массивный опускной колодец, разделенный на ячейке; б — легкий опускной колодец из

Цилиндрической сваи-оболочки; в — установка колодца на поверхности грунта; г — разработка грунта грейфером и заполнение нижней части бетонной смесью

Для погружения колодца в окружающий грунт нижнюю часть колодца выполняют в виде специального ножа из листовой стали, закрепляемого с помощью закладных деталей (рис. 11.2, а), а для уменьшения трения грунта о стенки колодца при погружении с внешней стороны делают небольшой уступ, и образующийся зазор заполняют раствором бентонитовой глины, которая поддерживает стенки грунта в процессе погружения (рис. 11.2, б). В последние годы в связи с развитием производства сборного железобетона стали применять и массивные сборные опускные колодцы, собираемые из отдельных секций толщиной 50…60 см с горизонтальным членением на блоки, повторяющие конфигурацию колодца в плане.

Рис. 11.2. Конструктивные детали и нагрузки, действующие на колодец:а — конструкция ножа, б — сборный опускной колодец; в — нагрузки, действующие на колодец во время погружения; г — эпюры неравномерного давления грунта на боковой поверхности при «навале» на грунт во время неравномерного погружения; 1 — щель, заполняемая раствором бентонитовой глины; 2 — бетонная стенка; 3 — нож из сварной стали; 4 — железобетонное днище колодца

Сборные оболочки имеют небольшой собственный вес по сравнению с массивным опускным колодцем, поэтому сила тяжести в данном случае оказывается недостаточной для погружения. В связи с этим оболочки погружаются принудительно мощными вибропогружателями и вибромолотами, которые с помощью болтовых соединений жестко прикрепляют к верхнему фланцу Через специальный наголовник.

В строительной практике применяют оболочки диаметром от 1 до 3 м при толщине стенок 12 см. После погружения первого звена из его внутренней полости грунт извлекают, затем вибропогружателем доводят оболочку до проектной отметки. Нижнее звено оболочки оборудуют ножом, а стык звеньев выполняют с помощью фланцевых соединений на болтах или сварке.

Если в основании оболочки имеется слой скального грунта, то в нем пробуривают скважину, диаметр которой равен диаметру оболочки, с последующим заполнением оболочки и скважины бетоном, что обеспечивает заделку фундамента в скальном грунте.

В нескальных грунтах для повышения несущей способности прибегают к устройству уширения с помощью разбуривания или каму-флетного взрыва с последующим заполнением полости бетоном.

Оболочки погружают в грунт на глубину 30 м и более. К достоинствам таких фундаментов относится очень высокая несущая способность (более 10 МН), к недостаткам — возникновение значительных колебаний грунта на большом расстоянии от места погружения фундамента, в связи с чем их не рекомендуется применять в заселенных районах городов.

При погружении опускных колодцев необходимо обеспечивать его вертикальное положение, не допуская развития крена. Крен обычно устраняют с помощью увеличения разработки грунта в той части, где осадка меньше.

Способ разработки грунта выбирают в зависимости от размеров опускных колодцев, а также инженерно-геологических условий строительной площадки. При значительном объеме земляных работ применяют грейдеры или экскаваторы с бульдозером, опускаемыми в колодец. Последние, находясь в колодце, заполняют специальные ковши, которые с помощью крана извлекают на поверхность. При таком способе разработки грунта необходимо предотвращать поступление подземных вод в колодец, что осуществляется с помощью искусственного водопонижения или устройства шпунтовых заграждений, погружаемых до слоя водоупорных грунтов.

Разработка грунтов грейфером, эрлифтом или гидромонитором разрешается без устройства водозащитных экранов, однако в этом случае внутри колодца необходимо поддерживать повышенный уровень воды в колодце, превышающий уровень подземных вод, для предотвращения поступления (наплыва) грунта, окружающего колодец, что может вызвать около него осадку поверхности основания.

Расчет опускных колодцев производят на нагрузки, возникающие как в процессе погружения колодца, так и во время эксплуатации. При погружении колодцы испытывают воздействие следующих нагрузок: собственный вес колодца, давление грунта на стенки колодца, реактивное давление грунта, действующее на нож, и силы трения по боковой поверхности (рис. 11.2, в).

Тонкостенные оболочки рассчитывают, как пространственные оболочки, методами, используемыми при проектировании железобетонных конструкций.

Опускные колодцы, прямоугольные в плане, рассчитывают в горизонтальной плоскости как статически неопределимые железобетонные рамы на нагрузки, аналогичные действующим на цилиндрические колодцы. Нож колодца рассчитывают как консольную конструкцию, находящуюся под действием направленной под углом реакции грунта.

Днище колодца обычно выполняют из монолитного железобетона и рассчитывают как плитную конструкцию, находящуюся под действием реактивного давления грунта и гидростатического давления воды.

Опускные колодцы, погружаемые ниже уровня подземных вод, необходимо рассчитывать против всплытия. Для предотвращения всплытия днище колодца заанкеривают с помощью свай, погружаемых в нижележащие слои грунта, или устройства анкеров (см. рис. 8.6, в).

Основным неудобством при погружении опускного колодца является подводный способ разработки грунта. Сложность контролирования и управления этим процессом в случае неполного заполнения ковша грейфера, извлекающего грунт, и трудностей, возникающих при удалении камней, валунов и других крупных включений, привели к необходимости разработки и применения кессонного метода устройства фундаментов.

Способ возведения фундаментов с помощью кессона основывается на отжатии подземных вод из зоны разработки грунта с помощью избыточного давления, создаваемого сжатым воздухом.

Этот способ был впервые предложен и осуществлен в XIX в В связи с тем что этот способ связан с пребыванием людей при повышенном давлении и использовании дорогого оборудования, в настоящее время его применяют сравнительно редко, обычно в тех случаях, когда имеются препятствия для возведения свайных фундаментов и опускных колодцев.

Кессон представляет собой жесткую коробчатую конструкцию (рис. 11.3, д), имеющую потолок и боковые стенки консоли, располагаемые в нижней части фундамента. В рабочую камеру 5 подается сжатый воздух по трубам, давление которого назначается таким, чтобы уравновесить давление столба воды высотой Н и обеспечить ее отсутствие в рабочей камере. Для сообщения с рабочей камерой, которое необходимо в основном для прохода людей, подачи материалов и оборудования, на шахтной трубе устанавливают шлюзовой аппарат. Разработку грунта часто осуществляют гидромонитором, а его удаление — с помощью эрлифта.

Рис. 11.3. Схема возведения фундамента глубокого заложения кессонным методом

По мере разработки грунта в рабочей камере кессон под действием собственного веса и надкессонной кладки 9 погружается в грунт. Надкессонную кладку наращивают по мере погружения кессона (рис. 11.3, а). По достижении кессона проектной отметки (рис. 11.3, б) рабочую камеру заполняют кладкой или бетонной смесью, шахтные трубы и шлюзовые аппараты снимают, а шахтные колодцы также заполняют кладкой или бетонной смесью.

Продолжительность работы в кессоне строго регламентируется правилами техники безопасности.

Кессоны выполняют из монолитного или сборного железобетона и рассчитывают на нагрузки, действующие на опускные колодцы совместно с дополнительными: от веса кладки и избыточного давления на стенки рабочей камеры.

Похожие статьи:Основания под фундаменты зданий и сооружений

Навигация:Главная → Все категории → Фундаменты

Статьи по теме:

Главная → Справочник → Статьи → Блог → Форум

stroy-spravka.ru

Виды фундаментов для частного дома

Марк Витрувий завещал. В трудах архитектора Древнего Рима рекомендовано ставить дома на фундамент. Получается, строительство на опоре практиковали еще в 1 веке до нашей эры.

Однако, теоретические выкладки по фундаментостроению появились только в 18-ом столетии. Стоит обратиться к изданиям Шарля Кулона. В 1773-ем французский ученый рассчитал формулу сопротивления грунта сдвигу, в зависимости от типа почвы.

Виды-фундаментов-для-частного-дома-17

Рассечет натиска земли на подпорную плоскость фундамента – тоже заслуга Кулона.  Ученый специализировался на свайных опорах. Коллега Кулона по фамилии Трижо в 1841-ом придумал кессонные основы с закладкой труб вглубь через водоносные пласты.

Пройти их помогал загнанный в стальные трубы сжатый воздух. За рекомендациями в изготовлении фундаментов из бетона жители 19-го века шли к Баиру Карповичу, точнее, его книге. В 1869-ом году ученый выпустил труд «Основания и фундаменты».

В СССР по аналогии назвали  институт по изучению площадок зданий. Они, как видно, бывают разнотипными. Выбор конкретного зависит от земли, размеров и массы здания, назначения постройки. Разберем основания для частных домов.

Виды-фундаментов-для-частного-дома-15

Ленточный фундамент для частного дома

Включен в востребованные виды фундаментов. Ленту считают золотой серединой меж добротностью и доступностью. Речь о мосте бетона под внешними стенами строения. Альтернатива – сборный фундамент. В нем лента – сложенные в композицию плиты. Устанавливают блоки с помощью спецмашин.

Под домами из дерева и газобетона фундамент заглубляют максимум на 70 сантиметров. Обычно, для двухэтажного строения хватает 40-60-ти. Если же дом массивный, к примеру, кирпичный, да еще и почва зыбкая и сильно промерзающая, ленту фундамента уводят на глубины от 70-ти до 90-та сантиметров.

Виды-фундаментов-для-частного-дома-3

Дабы тяжесть дома распределилась максимально равномерно, змейку из бетона ставят на тонкую сплошную плиту-основание. Так же, это оправдано при обустройстве подвальных и цокольных этажей.

Выдержать солидные нагрузки ленточной заливке помогает, так же, закладка арматуры и бутирование. Последнее подразумевает «разбавление» цемента примерно третью крупных осколков кирпича, карьерных камней.

Они, как и арматура, упрочняют ленту фундамента. Впрочем, какой бы она ни была, рекомендуется максимум для 3-этажных легких и для 2-этажных тяжелых домов стоящих на сухой, непучинистой земле.

Виды-фундаментов-для-частного-дома-16

Монолитный фундамент для частного дома

В отличие от ленточного невосприимчив к перемещению почвы, хоть по горизонтали, хоть по вертикали. Поэтому монолитная плита входит в виды фундаментов для частного дома стоящего на водоносных пластах земли.

Достаточно сезонного подхода влаги к поверхности, к примеру, весной. Пучинистые почвы – тоже вариант для сплошной заливки. Экономной как ленточную, ее не назвать. Минимальная толщина плиты – 30 сантиметров, а максимальная – 1 метр. Бетона уходит в разы больше, как и арматуры, которую пускают по всей площади плиты.

Монолитный фундамент принято класть на подложку из гравия или иную насыпь. Получается, как говорят строители, плавающая плита. Она ровная и жесткая. Это исключает возможность деформации здания, но и исключает возможность обустройства подвала.

Виды-фундаментов-для-частного-дома-4

Подвидом монолитного основания признана шведская плита. В частном домостроении она популярна, поскольку утеплена со всех сторон вспененным полистиролом, а в своем теле прячет «змеевик» из труб, подсоединенных к системе отопления.

Полы получаются теплыми. Горячая вода ходит в замкнутом контуре, передавая жар вверх. Вверх он уходит и от батарей, только вот пол-то ниже их уровня остается прохладным. Шведская плита решает проблему без лишних затрат на подогрев пола, ведь вода и так стоит в трубах.

Многие считают, что это – выбор оптимального фундамента для частного дома. Впрочем, шведскую плиту можно применить и вкупе с ленточным фундаментом лишь в виде бетонной стяжки.

Виды-фундаментов-для-частного-дома-5

Бюджетным подвидом плиточного фундамента является ложный кессон. Это гибрид с ленточным. «Змейка» формируется по периметру, под стенами и перегородками. Получаются ленточные соты. Их дно заливают тонким слоем.

Остальной объем заполняют утрамбованным песком со щебнем. Порой, полость оставляют пустой.  Поверх вновь заливают тонкий пласт бетона. Строительная смесь значительно экономится.

Правда, несущая способность ложнокессонного фундамента меньше монолитного стандарта. Вариант хорош для зданий из газоблока и каркасников. Почему кессон именуют ложным, станет понятно из финальной главы статьи.

Виды-фундаментов-для-частного-дома-6

Столбчатый фундамент для частного дома

Входит в виды фундамента для одноэтажного дома или двухэтажного из легковесных материалов типа дерева и газоблоков. Основой строения становятся врытые в землю столбы из металлических труб, асбеста, бетона, пластика.

Порой, «пеньки» складывают из кирпича или камня, располагая под углами дома и в местах пересечения его несущих стен. Для небольшой постройки достаточно. Если дом крупный и массивный, столбы расставляют на равном удалении друг от друга по всему периметру и под несущими стенами.

Меж выступами фундамента оставляют от 1-го до 2,5 метров. Минимум рассчитан на тяжеловесные здания в почвах с близкими к поверхности водоносными слоями. Такие слои – плохая опора для жилища.

Трубы легко вкопать до уровня устойчивой почвы, не опустошив карманы, ведь сокращаются земляные работы и объем заливки. Если столбы закупаются, ценник, как правило, тоже меньше или соизмерим с видами ленточного фундамента.

Столбчатое основание сокращает время возведения фундамента. Актуально для быстрых строек. К тому же, торчащие над землей минимум на 25 сантиметров «пеньки» позволяют спрятать под дом все коммуникации и исключают подтопление жилища. Оно получается этакой избушкой на ножках. Только их и намочит.

На столбы дом рекомендуют ставить не только в водонасыщенных грунтах, но и на наклонных участках. Заливка стандартного фундамента здесь влетает в копеечку. С 1-ой стороны бетонное основание поднимается над землей на метры.

Даже при ленточной заливке дорогостояще. Платить стоит лишь при обустройстве цоколя. В этом случае деньги уйдут не просто на опору дома, но и на полезные площади. Столбы подвальное помещение исключают.

Виды-фундаментов-для-частного-дома-7

Виды-фундаментов-для-частного-дома-9

Подвидом столбчатого фундамента является технология с названием «Индивидуальное строительство и экология». Сокращают до ТИСЭ. К низу столбов заливают ростверки. Это расширяющиеся основания из бетона.

Такие удерживают фундамент в пучинистых почвах. Технология надежна, выдерживает даже массивные 3-этажки, но требует бурения под столбы скважин с расширением. Углубляются на 10 сантиметров ниже уровня промерзания грунта.

Это дополнительные расходы. Потратиться придется и на арматуру, обязательно закладываемую в скважины. Заливка их бетоном – предфинальный этап. Предстоит еще установка ростверка. Это лента, укладываемая по периметру столбов.

В общем, получается соединение 2-ух типов основы. Здесь и столбы, и лента, лежащая на них. Такую опору можно записать и в виды фундаментов для двухэтажного дома, и для 3-этажного, и для легкого, и для каменного. ТИСЭ выдержит любые нагрузки и, при этом, по ценнику равен ленточному.

Виды-фундаментов-для-частного-дома-11

Свайный фундамент для частного дома

Виды свайных фундаментов близки к столбчатым, но иначе монтируются. Сваи, заранее изготовленные на заводе, вбивают в грунт. Нужна спецтехника. Столбы же вкапывают, порой, изготавливая на месте. Так же, на сваи растверк кладется всегда. На столбы, как говорилось, лента заливается лишь в случае ТИСЭ.

Как и столбы, сваи хороши для пучинистых, водонасыщенных почв. Дабы достичь устойчивых слоев грунта, приходится вбивать основы на многие метры. Это система стоячих свай. Если твердая земля слишком далеко, делают висячие.

Они передают нагрузку на опорные грунты боковой поверхностью, так и не доходя до устойчивой почвы своими основаниями. Опираться приходится на сжимаемые массы, к примеру, супески и суглинки. В них висячие сваи удерживают отрицательные, сжимающие силы трений.

Однако, во время промерзания пучинистых земель возникают и положительные. Такие выталкивают сваи и провоцируют растягивание конструкции. Обязательно проверить выбранные сваи на противостояние им. Из плюсов выталкивающих сил укажем рост несущего потенциала фундамента в холода.

Свайный фундамент, каким бы он ни был, выгоден только в болотистых почвах. Если частный дом строится на таковых, стоит посоветоваться с толковыми инженерами, поскольку задача предстоит сложная.

Виды-фундаментов-для-частного-дома-12

Виды-фундаментов-для-частного-дома-13

Истинно кессонный фундамент для частного дома

Эта основа используется не просто в обводненных почвах, а в обводненных с внутренними обломками скал и прочих твердых субстанций, к примеру, утопленной древесины. Под такими субстанциями разработка грунта невозможна.

Проходить почву насухо трудоемко, поскольку нужны отводы воды. Обойтись без них помогают кессоны. Это опрокинутые ящики. Их опускают на нужную глубину, нагнетая внутрь воздух. Его давление на стенки кессона уравновешивает давление воды.

Вот и шанс разработать почву. Для этого на глубине должны быть люди. В общем, вот он – высший пилотаж частного строительства. На такие дорогостоящие «жертвы» идут в случае крайней необходимости, к примеру, если неблагополучный участок расположен в уникальном, примечательном месте или памятен. Обычно же, от сложных земель стараются избавиться.

Кессоны делают из железобетона. Высота камеры должна быть от 220-ти сантиметров. Вниз устройство идет по опускному колодцу, поддерживаемое специализированной техникой. Максимальная заглубление фундамента равно 45-ти метрам.

Виды-фундаментов-для-частного-дома-14

К кессону примыкает шлюз. Рабочие сначала входят в него. Начинается постепенное доведение давление в шлюзе до показателей в камере. Привыкнув, рабочие переходят в кессон. Из него выходят еще медленнее.

Быстрое снижение давление приводит к небезызвестной кессонной болезни. В общем, потратить на возведение фундамента, даже для небольшого дома, придется миллионы.

Внешне его основа выглядит как монолитный стол из бетона. Под его «крышкой и меж «ног» действует давление вовне. Извне идет сжатие с боков и, конечно, нагнетается масса сверху вниз (на «столешницу»).

zastpoyka.ru

VII.2. Кессоны

§ VII.2. КЕССОНЫ

VII.2.1. Область применения и классификация

В настоящее время кессоны применяются, когда:

  • – подземное сооружение возводится в непосредственной близости от существующих зданий или сооружений и есть опасность выноса или выпора грунта из-под подошвы их фундаментов;
  • – подземное сооружение строится в сильно обводненных грунтах. В этих условиях опускной колодец требует больших затрат на водоотлив, и поэтому экономически выгоднее использовать кессон. Кроме того, кессон находит применение при проходке горизонтальных туннелей в водонасыщенных грунтах.

По назначению различают кессоны: для устройства глубоких фундаментов и заглубленных зданий; для выполнения различных строительных работ под водой.

По способу опускания кессоны делят на: опускаемые с поверхности земли и из котлованов; островные, погружаемые на местности, покрытой водой, с искусственных островков; наплавные, опускаемые с воды путем затопления кессонной камеры, которой предварительно сообщается плавучесть [27].

Озеров Н.В. Кессонные фундаменты

Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Основания и фундаменты

VII.2.2. Элементы кессона и оборудование для его опускания
VII.2.2.а. Кессоны для устройства глубоких фундаментов и заглубленных зданий

Собственно кессон (рис. VII-22) состоит из кессонной камеры, надкессонного строения, гидроизоляции Обычно кессонная камера устраивается из железобетона и лишь в редких случаях — из металла. Форма сечения кессонной камеры — прямоугольная, квадратная или круглая. Стенки камеры наклонные и заканчиваются ножом (рис. VII-23). Высота камеры от банкетки до потолка принимается не менее 2,2  м. В потолке оставляются отверстия для установки шахтной трубы, патрубков для трубопроводов сжатого воздуха, воды, электроэнергии.

Схемы устройства кессона

Рис. VII-22. Схемы устройства кессона

а — для заглубленного здания; б — для глубокого фундамента; 1 — кессонная камера; 2 — надкессонное строение; 3 — гидроизоляция; 4 — шлюзовой аппарат

Нож кессона

Рис. VII-23. Нож кессона

а — тупой; б — с резцом; 1 — опалубка; 2 — хомуты

Надкессонное строение выполняется в зависимости от назначения кессона как колодец с железобетонными стенками (рис. VII-22, а) или в виде сплошного массива из монолитного бетона или железобетона (рис. VII-22, б). Иногда в конструкции надкессонного строения предусматривается установка по наружному контуру кессона тонких железобетонных плит-оболочек, выполняющих роль внешней опалубки. С внутренней стороны плиты-оболочки снабжается выпусками арматуры или покрываются мелким щебнем (щебеночная шуба). То и другое служит связью для бетона, укладываемого в надкессонное строение.

Гидроизоляция наносится на наружные стенки кессона для защиты от проникания воды внутрь кессона. В качестве гидроизоляции применяются торкрет, покраска битумно-бензиновым раствором, штукатурка из холодных битумных мастик и из горячих асфальтовых растворов, металлические листы, свариваемые в виде ванны. Перед нанесением гидроизоляции поверхность бетона должна быть хорошо очищена от грязи, краски, масляных пятен и т.п. Удаляют также слой слабого бетона, выступы и наплывы на поверхности бетона, расчищают каверны.

VII.2.2.б. Наплавные кессоны

При возведении фундамента, опоры или заглубленного здания вдали от берегов водоема при значительных глубинах воды, в связи с чем устройство искусственных островков становится сложным и экономически невыгодным, используют наплавные кессоны.

Наплавной кессон (рис. VII-24) состоит из кессонной камеры, замкнутой камеры равновесия, открытой сверху центральной шахты, регулировочных шахт, рабочего балласта на потолке камеры.

Последовательность работ по погружению наплавного кессона

Рис. VII-24. Последовательность работ по погружению наплавного кессона

а — транспортирование кессона к месту погружения; б — погружение кессонной камеры; в — опускание камеры на дно; г — выполнение работ по кладке фундамента; 1 — центральная шахта; 2 — регулировочная шахта; 3 — замкнутая камера равновесия; 4 — кессонная камера; 5 — балласт

Камера равновесия, центральная и четыре регулировочные шахты наполняются водой, которая служит балластом кессона при его погружении. Для всплытия кессона водный балласт удаляется из камеры равновесия сжатым воздухом и из шахт — насосами [44].

VII.2.2.в. Оборудование для опускания кессонов

В СССР наибольшее распространение получил шлюзовой аппарат конструкции Н.И. Филиппова. Он предназначен для шлюзования людей и грузов, поступающих в кессонную камеру, и выполнения грузоподъемных операций при спуске в камеру или подъеме различных грузов из нее. Шлюзовой аппарат соединен с кессонной камерой шахтными трубами.

Схема шлюзового аппарата представлена на рис. VII-25. Он состоит из центральной камеры, пассажирского прикамерка, грузового прикамерка. Сверху центральной камеры расположен подъемный механизм, состоящий из барабана, редуктора и электродвигателя.

К барабану на стальном канате подвешена бадья. Пассажирский и грузовой прикамерки имеют подвесные на роликах двери, открывающиеся только внутрь. Для герметичности при шлюзовании двери снабжены резиновыми прокладками. Сжатый воздух от компрессорной станции подается в центральную камеру и прикамерки по трубопроводу.

Схема шлюзового аппарата конструкции Н.И. Филиппова

Рис. VII-25. Схема шлюзового аппарата конструкции Н.И. Филиппова

1 — центральная камера; 2 — трубопровод; 3 — пассажирский прикамерок; 4, 5 — подвесные двери; 6 — бадья; 7 — рельсовый путь; 8 — вагонетка; 9 — грузовой прикамерок; 10 — механизм подъем; 11 — лаз для людей; 12 — перегородка; 13 — грузовое отделение; 14 — овальный фланец

В центральной камере и грузовом прикамерке уложен рельсовый путь под вагонетку. Грунт, поднятый из кессонной камеры в бадье, выгружается в вагонетку с откидным дном и выдается через грузовой прикамерок наружу, где вагонетка разгружается в специально устроенный желоб. Внизу центральная камера заканчивается овальным фланцем, к которому приболчивается шахтная труба. Шахтные трубы состоят из звеньев длиной по 2 м, соединяемых между собой болтами. Внутри шахтной трубы имеется перегородка, разделяющая трубу на два отделения — людской лаз и грузовое отделение. Людской лаз оборудован лестницей, а грузовое отделение — направляющими устройствами для спуска-подъема бадьи.

Трубопроводы для подачи сжатого воздуха монтируются из двух ниток, идущих параллельно от компрессорной станции. Диаметр трубопроводов устанавливается расчетом в зависимости от его длины и расхода сжатого воздуха. От каждой нитки магистрального воздухопровода делают три отвода — два для подачи сжатого воздуха в кессонную камеру и один в центральную камеру и прикамерки шлюзового аппарата. Рабочей является одна из ниток воздухопровода, вторая — резервная.

Компрессорная станция монтируется, как правило, из стационарных компрессоров производительностью 10—20 м3/мин с электроприводом. Количество компрессоров определяется по максимально возможному расходу воздуха. Кроме того, на случай аварии должны быть запасные компрессоры. Согласно правилам техники безопасности, резервная мощность компрессорной станции должна быть: при одном рабочем компрессоре не меньше 100%, при двух — не менее 50%, при трех и более — не меньше 33% рабочей мощности. Технические данные воздушных компрессоров стационарного типа, применяемых на кессонных работах, приведены в табл. VII-3.

Таблица VII-3

Технические данные воздушных компрессоров стационарного типа

Показатель Марка компрессора
В-300-2К 2Р-20/8 160В-10/8 200В-10/8 2СА-8 КВ-200
Производительность, м3/мин 40 20 20 10 10 4,5
Давление воздуха после II ступени, МПа 0,8 0,8 0,8 0,8 0,8 0,6
Частота вращения, об/мин 330 500 720—735 720 480 650
Мощность двигателя, кВт 250 120 140 75 75 50
Габариты, мм: длина ширина высота  330018202200  180015002000  171519101675  13509621430  155016701870  11006651130
Вес, кН 80 45 28 14,5 32 7,5
Охлаждение Водяное

На строительстве, если максимальное давление сжатого воздуха в кессоне превышает 0,15 МПа, обязательно устанавливается лечебный шлюз для заболевших кессонной болезнью.

Оборудование для гидромеханической разработки грунта в камере кессона состоит из гидромониторов (рис. VII-13) и гидроэлеваторов (рис. VII-14). В комплекс одной установки для гидромеханической разработки грунта входят два гидромонитора и один гидроэлеватор. Принято считать, что одним гидромонитором можно обслужить в песчаных и супесчаных грунтах 150—250 м2, а в глинистых грунтах — 100—150 м2 площади кессона.

Величины удельных расходов мониторной воды и оптимальных скоростных напоров приведены в табл. VII-4 и VII-5.

Таблица VII-4

Удельный расход мониторной воды

Грунты Удельный расход мониторном воды на 1 м3 грунта, м3
Пески: пылеватые мелкие средней крупности крупные гравелистые  4—75—86—108—1210—14
Супеси: текучие пластичные твердые  7—98—109—12
Суглинки: текучие пластичные твердые  9—1010—1211—15
Глины: текучие пластичные твердые  10—1112—1614—20

Таблица VII-5

Оптимальные скоростные напоры

Грунты Оптимальные скоростные напоры, м
Пески: рыхлые средней плотности плотные  7—1010—1515—20
Супеси: текучие пластичные твердые  30—4040—5050—80
Суглинки: текучие пластичные твердые  40—5050—7070—100
Глины: текучие пластичные твердые  50—7070—100100—150

xn--h1aleim.xn--p1ai


Смотрите также


loft абиссинка абиссинская скважина автономная канализация автономное водоснабжение автономное газоснабжение автономные газовые системы анализ воды арболит арболит достоинства арболит недостатки арболит своими руками артезианская скважина бетонный септик блок-хауз блок-хаус блокхауз блокхаус брама винтовой фундамент винтовые сваи выбор пиломатериалов выбор фундамента газгольдер Газобетон газобетон достоинства газобетон минусы газобетон недостатки газобетон это греющий пол деревянные окна деревянные фасады дизайн интерьеров дизайн хай-тек дома из арболита доркинг достоинства артезианских скважин евроокна. жб кольца забивная скважина звукоизоляция полов звукоизоляция помещений звукоизоляция своими руками звукоизоляция стен звукопоглощающие материалы имитация бревна имитация бруса интерьер в стиле хай-тек интерьеры инфильтратор инфильтратор для септика каменные стены канализация своими руками каркасник каркасный дом каркасный дом своими руками качество воды классицизм клеёный брус клееный брус клееный брус минусы клееный брус плюсы колодец куры брама видео лофт фото мансарда своими руками мансарда это минусы арболита мясные породы кур недостатки артезианских скважин недостатки клееного бруса объем инфильтратора огород в октябре окна ПВХ октябрьские работы в саду опилкобетон осенние работы в саду особенности стиля хай-тек отопление полами пиломатериалы плавающий пол Пластиковые окна плюсы газобетона поля фильтрации постройка фундамента пробковое покрытие пробковые полы размер септика расстояние от септика самодельный арболит самодельный септик санитарная зона септик септик из колец сибирская лиственница скважина скважина-игла сорта пиломатериалов стиль классицизм в интерьерах стиль лофт стиль хай-тек строим мансарду строительство фундамента таунхаус тепловой насос теплый пол типы фундаментов установить инфильтратор устройство каркаса устройство мансарды устройство септика устройство стен утепление утепление полов утепление стен утепление фасада фото интерьеров фундамент фундамент на сваях фундамент ошибки фундамент своими руками химический анализ воды хранение пиломатериалов электрический пол Электропол
 

ReadMeHouse
Энциклопедия строительства и ремонта